

Preparation of Tungsten Alkyl Alkylidene Alkylidyne **Complexes and Kinetic Studies of Their Formation**

Laurel A. Morton, Shujian Chen, He Qiu, and Zi-Ling Xue*

Contribution from the Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996

Received November 6, 2006; E-mail: xue@ion.chem.utk.edu

Abstract: An equilibrium mixture of alkyl alkylidyne W(CH₂SiMe₃)₃(≡CSiMe₃)(PMe₃) (1a) and its bis-(alkylidene) tautomer W(CH₂SiMe₃)₂(=CHSiMe₃)₂(PMe₃) (**1b**) has been found to undergo an α -hydrogen abstraction reaction in the presence of PMe₃ to form alkyl alkylidene alkylidyne W(CH₂SiMe₃)(=CHSiMe₃)- $(\equiv CSiMe_3)(PMe_3)_2$ (2). In the presence of PMe₃, the formation of 2 follows first-order kinetics, and the observed rate constant was found to be independent of the concentration of PMe₃. The activation parameters for the formation of **2** are $\Delta H^{\ddagger} = 28.3(1.7)$ kcal/mol and $\Delta S^{\ddagger} = 3(5)$ eu. In the presence of PMe₂Ph, an equilibrium mixture of W(CH₂SiMe₃)₃(≡CSiMe₃)(PMe₂Ph) (3a) and its bis(alkylidene) tautomer W(CH₂-SiMe₃)₂(=CHSiMe₃)₂(PMe₂Ph) (**3b**) was similarly converted to W(CH₂SiMe₃)(=CHSiMe₃)(=CSiMe₃)(PMe₂- Ph_{2} (4). The observed rate of this reaction was also independent of the concentration of $PMe_{2}Ph$. These observations suggest a pathway in which the tautomeric mixtures **1a**,**b** and **3a**,**b** undergo rate-determining, α -hydrogen abstraction, followed by phosphine coordination, resulting in the formation of the alkyl alkylidene alkylidyne complexes 2 and 4.

Alkyl alkylidene alkylidyne complexes are unique compounds containing single, double, and triple bonds to one atom in a single molecule. The first such complex, W(CH₂CMe₃)(= $CHCMe_3$)($\equiv CCMe_3$)(PMe_3)₂ (5, Scheme 1a), reported by Clark and Schrock, was prepared through α -hydrogen abstraction by heating a solution of alkyl alkylidyne complex W(CH₂CMe₃)₃- $(\equiv CCMe_3)$ in liquid PMe₃ at 100 °C.¹ The crystal structure of an analogous complex, W(CH₂CMe₃)(=CHCMe₃)(=CCMe₃)-(dmpe) (6) containing a chelating phosphine ligand dmpe (Me₂-PCH₂CH₂PMe₂), was reported by Churchill and Youngs.² 6, unlike the bis-PMe₃ complex 5, exhibits cis coordination of the chelating phosphine with the alkylidyne ligand in the axial position (Scheme 1a). It is hypothesized that the phosphine ligands in 5 are coordinated trans to one another, and the other ligands occupy the equatorial sites in a trigonal bipyramidal configuration. Rhenium alkyl alkylidene alkylidyne complexes $Re(CH_2CMe_3)_2$ (=CHCMe_3)(=CCMe_3) and $Re(CH_2CMe_3)$ (= $CHCMe_3$ ($\equiv CCMe_3$)(py)₂(OTf), as well as their derivatives, have also been reported (Scheme 1b).³

Earlier we had found unusual reactions of d⁰ tantalum bis-(alkylidene) complexes, such as Ta(CH₂SiMe₃)(=CHSiMe₃)₂- $(PMe_3)_2$, with silanes.⁴ The reactivities of the d⁰ tungsten complexes containing Me₃SiCH= and Me₃SiC≡ ligands toward silanes were of interest to us. We thus attempted to prepare W(CH₂SiMe₃)(=CHSiMe₃)(=CSiMe₃)(PMe₃)₂ (2) and W(CH₂- Scheme 1

SiMe₃)(=CHSiMe₃)(=CSiMe₃)(PMe₂Ph)₂ (4), the β -Si analogs of 5. In these studies, we reported that $W(CH_2SiMe_3)_3 (\equiv$ CSiMe₃) (7) reacts with PMe₃ and PMe₂Ph, forming adducts $W(CH_2SiMe_3)_3 \equiv CSiMe_3)(PR_3)$ (R₃ = Me₃, 1a, and Me₂Ph, **3a**).⁵ These adducts subsequently undergo α -hydrogen migration to give bis(alkylidene) tautomers W(CH₂SiMe₃)₂(=CHSiMe₃)₂- (PR_3) $(R_3 = Me_3, 1b, and Me_2Ph, 3b)$ and reach equilibria,

⁽¹⁾ Clark, D. N.: Schrock, R. R. J. Am. Chem. Soc. 1978, 100, 6774.

 ⁽¹⁾ Chark, D. N., Ochock, R. K. S. J. Inorg. Chem. 307, 18, 2454.
 (3) (a) Edwards, D. S.; Biondi, L. V.; Ziller, J. W.; Churchill, M. R.; Schrock, R. R. Organometallics 1983, 2, 1505. (b) LaPointe, A. M.; Schrock, R. R. Organometallics 1995, 14, 1875.

⁽a) Diminnie, J. B.; Xue, Z.-L. J. Am. Chem. Soc. 1997, 119, 12657. (b) (4)(d) Diminie, J. B.; Raton, J. R.; Cai, H.; Quisenberry, K. T.; Xue, Z.-L. Organometallics **2001**, *20*, 1504.

^{(5) (}a) Morton, L. A.; Zhang, X.-H.; Wang, R.; Lin, Z.; Wu, Y.-D.; Xue, Z.-L. J. Am. Chem. Soc. 2004, 126, 10208. (b) Morton, L. A.; Wang, R.; Yu, X.; Campana, C. F.; Guzei, I. A.; Yap, G. P. A.; Xue, Z.-L. *Organometallics* **2006**, *25*, 427.

Scheme 3

Diastereotopic 4

leading to a rare case in which both alkyl alkylidyne complexes and their bis(alkylidene) tautomers were observed.^{5–7}

We have recently found that heating the tautomeric equilibrium mixtures of $1a/3a \rightleftharpoons 1b/3b$ in the presence of phosphines leads to α -hydrogen abstraction and the formation of alkyl alkylidene alkylidyne complexes W(CH₂SiMe₃)(=CHSiMe₃)- $(\equiv CSiMe_3)(PMe_3)_2$ (2) and $W(CH_2SiMe_3)(=CHSiMe_3)(\equiv$ $CSiMe_3)(PMe_2Ph)_2$ (4) (Scheme 2). Both 2 and 4 exist as mixtures of two rotamers, 2-syn and 2-anti and 4-syn and 4-anti, as observed by NMR spectroscopy. Kinetic studies of the formation of 2 and 4 suggest that 1a/b and 3a/b undergo α -hydrogen abstraction, followed by the coordination of phosphine, to give the alkyl alkylidene alkylidyne complexes. In other words, the first phosphine PR₃ ligand coordinates to $W(CH_2SiMe_3)_3 \equiv CSiMe_3)$ (7), forming an adduct and its bis-(alkylidene) tautomer 1a/b (3a/b) (Scheme 2). This mixture then undergoes a-hydrogen abstraction to give an intermediate containing metal-carbon single, double, and triple bonds, prior to the coordination of the second phosphine ligand to give 2 (4). These studies offer the first direct insight into the formation of the unique alkyl alkylidene alkylidyne complexes. Our preparation and characterization of 2 and 4, as well as kinetic studies of their formation, are reported here.

Results and Discussion

Synthesis and Characterization of 2 and 4. High-oxidationstate alkylidyne complexes such as $W(CH_2SiMe_3)_3 (\equiv CSiMe_3)$ (7), highly electron deficient, are generally stabilized by the coordination of phosphine ligands. When PR₃ species (R₃ = Me₃, Me₂Ph) were added to solutions of $W(CH_2SiMe_3)_3 (\equiv CSiMe_3)$ (PR₃) (7), phosphine adducts $W(CH_2SiMe_3)_3 (\equiv CSiMe_3)$ -(PR₃) (1a/3a) were observed. The alkyl alkylidyne phosphine complexes then undergo tautomerization to bis(alkylidenes) $W(CH_2SiMe_3)_2 (\equiv CHSiMe_3)_2 (PR_3)$ (1b/3b).⁵ The exchanges are reversible and reach equilibria (Scheme 2).

Upon heating of these equilibrium systems containing phosphines PMe₃ and PMe₂Ph, the mixtures were found to yield alkyl alkylidene alkylidyne complexes W(CH₂SiMe₃)- $(=CHSiMe_3)(=CSiMe_3)(PMe_3)_2$ (2) and $W(CH_2SiMe_3)(=$ CHSiMe₃)(≡CSiMe₃)(PMe₂Ph)₂ (4), respectively, through α-hydrogen abstraction reactions (Scheme 2). The ¹H, ¹³C, and ³¹P NMR spectral analysis of 2 revealed two distinct rotamers, 2-syn and 2-anti, in solution.^{3b,8,9} The ratio of the two is 7:1 on the basis of ¹H NMR integration. It is likely that 2-syn is the major rotamer. In the 2-svn rotamer, the $-SiMe_3$ group on the alkylidene ligand points toward the alkylidyne ligand. Such rotameric mixtures were also observed in alkylidene alkylidyne complexes $Re(=CHCMe_3)(=CCMe_3)(OR)_2$.^{9a} In the dmpe complex $W(CH_2CMe_3)$ (=CHCMe_3)(=CCMe_3)(dmpe) (6), the only isomer observed in the X-ray crystal structure was the syn isomer (Scheme 1a).² One isomer of octahedral Re(CH₂CMe₃)-(=CHCMe₃)(=CCMe₃)(py)₂(OTf) (Scheme 1b) was observed, and it was believed to be the syn isomer.^{3b}

NMR spectroscopic characterization (1H, 13C, 31P, 29Si, 1Hgated-decoupled ^{13}C , and HMQC) of the more abundant 2-syn suggests that the PMe₃ ligands coordinate trans to one another. One resonance in the ³¹P NMR spectrum for 2-syn was observed at -2.21 ppm (${}^{1}J_{P-W} = 124.7$ Hz). The two *trans*-PMe₃ ligands exhibit virtual coupling and appear as a pseudotriplet in the ¹H and ¹³C NMR spectra at 1.26 and 20.74 ppm, respectively.¹⁰ Three singlet resonances of the -SiMe₃ groups were observed in the ¹H, ¹³C, and ²⁹Si NMR spectra of 2-syn. The ¹H resonances of the α -hydrogen atoms in $-CH_2SiMe_3$ appear as a triplet at -0.036 ppm with a large ${}^{2}J_{P-H} = 22.4$ Hz. In the tantalum bis(alkylidene) bis(phosphine) complex Ta(CH₂SiMe₃)- $(=CHSiMe_3)_2(PMe_3)_2$, where the phosphine ligands are trans to one another, a large coupling constant $({}^{2}J_{P-H} = 19.8 \text{ Hz})$ was observed as well.11 The resonance of the alkylidyne C atom in 2-syn appears at 339.0 ppm as a triplet (${}^{2}J_{P-C} = 11.1$ Hz; ${}^{1}J_{W-C} = 161.8$ Hz) due to its coupling with two equivalent P atoms, and it is upfield shifted from that (343.27 ppm) of $W(CH_2SiMe_3)_3 \equiv CSiMe_3)$ (7).¹² The alkylidene C and alkyl α -C atoms appear as triplets as well at 275.0 ppm ($^{2}J_{P-C}$ = 11.1 Hz; ${}^{1}J_{W-C} = 101.5$ Hz) and 25.63 ppm (${}^{2}J_{P-C} = 6.2$ Hz, ${}^{1}J_{W-C} = 36.3$ Hz), respectively. Most of the ${}^{1}H$, ${}^{13}C$, and ${}^{31}P$

⁽⁶⁾ To our knowledge, there is one other reported direct observation of an alkyl alkylidyne = bis(alkylidene) exchange: Chen, T.-N.; Wu, Z.-Z.; Li, L.-T.; Sorasaenee, K. R.; Diminnie, J. B.; Pan, H.-J.; Guzei, I. A.; Rheingold, A. L.; Xue, Z.-L. J. Am. Chem. Soc. **1998**, *120*, 13519.

⁽⁷⁾ Schrock, R. R. Chem. Rev. 2002, 102, 145.

⁽⁸⁾ See Supporting Information. Additional mechanistic pathways in the formation of 2 and 4 have been considered to show the dependence of reaction rates on concentration of the phosphines PMe₃ and PMe₂Ph.
(9) (a) Toreki, R.; Schrock, R. R. J. Am. Chem. Soc. 1992, 114, 3367. (b)

^{(9) (}a) IOFEKI, K.; SCHTOCK, K. K. J. Am. Chem. Soc. 1992, 114, 5361. (b) Toreki, R.; Vaughan, G. A.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc. 1993, 115, 127.

⁽¹⁰⁾ Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 3rd ed.; Wiley: New York, 2001.

⁽¹¹⁾ Diminnie, J. B.; Hall, H. D.; Xue, Z.-L. Chem. Commun. 1996, 2383.

⁽¹²⁾ Andersen, R. A.; Chisholm, M. H.; Gibson, J. F.; Reichert, W. W.; Rothwell, I. P.; Wilkinson, G. Inorg. Chem. **1981**, 20, 3934.

R₃ = Me₃, 2; R₃ = Me₂Ph, 4

Scheme 5. Cyclometalation Transition States in the Formation of 2 and 4

resonances of 2-anti are shifted only slightly from those of 2-syn. One exception in the ¹H NMR spectrum is that the alkylidene proton, W=CHSiMe₃, is significantly shifted in 2-anti to 13.46 ppm from 10.54 ppm for 2-syn. Likewise, the WCH₂SiMe₃ resonance in the ${}^{13}C{}^{1}H$ NMR spectrum at 34.0 ppm is shifted in 2-anti from 25.6 ppm in 2-syn.

Synthesis and Characterization of 4. PMe₂Ph is bulkier than PMe₃, and the phenyl group often acts as an electronwithdrawing group. In the presence of PMe₂Ph, its adduct, $W(CH_2SiMe_3)_3 \equiv CSiMe_3)(PMe_2Ph)$ (3a) and $W(CH_2SiMe_3)_2$ -(=CHSiMe₃)₂(PMe₂Ph) (**3b**) also undergo α -hydrogen abstraction, yielding the alkyl alkylidene alkylidyne complex W(CH₂- $SiMe_3$)(=CHSiMe_3)(=CSiMe_3)(PMe_2Ph)_2 (4). As for 2, there are 4-syn and 4-anti rotamers in solution (Scheme 2) in a ratio of 4-syn:4-anti = 27:1 on the basis of the ¹H NMR spectrum.

The methyl groups on the PMe₂Ph ligand in 4 are diastereotopic, as shown in the Newman projection down a W-P bond in Scheme 3. In addition, the two phosphine ligands show virtual coupling. The Me-P groups of 4-syn thus appear as two pseudotriplets in the ¹H and ¹³C NMR spectra.⁸ One ¹H NMR resonance of the Me-P groups on 4-anti overlaps with those of 4-syn.⁸

Attempts were made to prepare compounds analogous to 3 and 4 using PCy₃ or PPh₃. Addition of these bulky phosphines to solutions of W(CH₂SiMe₃)₃(\equiv CSiMe₃) (7) in toluene- d_8 , and

Figure 1. Kinetic plots for the conversion of **1a**,**b** to **2**. C_{1-0} and C_{2-t} are concentrations of **1a,b** (total) at time = 0 and in **2** (total) at time = t, respectively.

Figure 2. Kinetic plot for the formation of **4** at 348.2 K (ratio = $[PMe_2]$ -Ph]/[**3a,b**] = 13.5). C_{3-0} and C_{4-t} are the concentrations of **3a,b** (total) at time = 0 and 4 (total) at time = t, respectively.

their subsequent heating at 100 °C for 2 days yielded no products. No complexation was observed between PPh₃ or PCy₃ and W(CH₂SiMe₃)₃(\equiv CSiMe₃) (7). Perhaps the bulkiness of PCy₃ and PPh₃ prevents them from coordinating to 7 to form adducts, a prerequisite for the formation of their alkyl alkylidene alkylidyne derivatives.

Kinetic Study of the Conversion of 1a,b to 2 and 3a,b to 4. In the presence of phosphines, kinetic studies of the α -H abstraction reactions to yield 2 and 4 (Scheme 2) have been conducted. The conversion of 1 to 2 was found to follow firstorder kinetics (eq 1),^{8,13} as revealed by the ¹H NMR spectra of the reaction between 333.2(0.1) and 358.2(0.1) K (Figure 1). The observed rate constant k_{obs} [1.5(0.2) × 10⁻⁵ s⁻¹] at 338 K was found to be independent of PMe3 concentrations, when C_{PMe3} ranged from 1.51 to 3.06 M (PMe3 in 12-30-fold excess):⁸

$$\mathrm{d}C_1/\mathrm{d}t = -k_{\rm obs}C_1 \tag{1}$$

C_1 : concentration of **1a,b**

The kinetics of the reaction to give 4 was also studied at 348.2 K by a kinetic equation similar to eq 1. These kinetic studies with different C_{PMe_2Ph}/C_3 ratios yielded the observed rate

Table 1. Observed Rate Constants (k_{obs}) in the Formation of 2^a

	Т (К)	$10^5 k_{\rm obs} ({\rm s}^{-1})^b$	Т (К)	$10^5 k_{\rm obs} ({\rm S}^{-1})^b$
33	3.2(0.1)	0.73(0.08)	353.2(0.1)	9.7(0.5)
33	8.2(0.1)	1.4(0.2)	358.2(0.1)	15.6(0.7)
34	3.2(0.1)	2.3(0.3)	363.2(0.1)	25.7(1.2)
34	8.2(0.1)	5.0(0.5)		

^{*a*} Solvent: toluene-*d*₈. ^{*b*} The largest random uncertainty is $\delta k_{ran}/k = 0.2/1.4 = 0.14$. The total uncertainty $\delta k/k = 0.15$ was calculated from $\delta k_{ran}/k$ and the estimated systematic uncertainty $\delta k_{sys}/k = 0.05$ by $\delta k/k = [(\delta k_{ran}/k)^2 + (\delta k_{sys}/k)^2]^{1/2}$.

 Table 2.
 Activation Parameters in Reactions through

 Cyclometalation Transition States
 \$\$\$

reacns	$\Delta {\it H}^{\! \pm} ({\rm kcal/mol})$	$\Delta S^{\! \mathrm{t}} \left(\mathrm{eu} \right)$
$CpTaCl_2(CH_2CMe_3)_2 \rightarrow CpTaCl_2(=CHCMe_3)^{14}$	21(2)	-4(10)
$W(CH_2CMe_3)_3 (\equiv CSiMe_3) \rightarrow$	27.5(0.6)	-2.0(1.7)
$W(CH_2CMe_3)_2(CH_2SiMe_3)(\equiv CCMe_3)^{15}$		
$W(CH_2CMe_3)_2(CH_2SiMe_3) (\equiv CCMe_3) \rightarrow$	25.4(0.8)	-9.5(1.9)
$W(CH_2CMe_3)_3 (\equiv CS1Me_3)^{1/3}$	01 ((1 4)	F (F)
$Ta(CH_2S_1Me_3)_5 \rightarrow Ta(CH_2S_1Me_3)_3 (=CHS_1Me_3)^{10}$	21.6(1.4)	-5(5)

Scheme 6

constant $k_{obs}' = 5.1(0.2) \times 10^{-5} \text{ s}^{-1}$ at 348.2(0.1) K for the formation of **4**. The observed rate constant (k_{obs}) of 1.5(0.2) × 10^{-5} s^{-1} at 348.2(0.1) K for the PMe₃ complexes **1a,b** is smaller than that involving bulkier PMe₂Ph complexes **3a,b**.

The observations that k_{obs} for the formation of W(CH₂SiMe₃)- $(=CHSiMe_3)(=CSiMe_3)(PMe_3)_2$ (2) and k_{obs}' for the formation of $W(CH_2SiMe_3)$ (=CHSiMe_3)(=CSiMe_3)(PMe_2Ph)_2 (4) are independent of phosphine concentrations suggest that the coordination of the second phosphine molecule is not the ratedetermining step. Two paths were considered.⁸ In path I (Scheme 4), tautomeric alkyl alkylidyne-bis(alkylidene) mixtures 1a,b and **3a,b** undergo a rate-determining, α -hydrogen abstraction to give monophosphine, alkyl alkylidene alkylidyne intermediates A which then bind PR₃ to give the bisphosphine products **2** and **4**. In this pathway, the α -hydrogen abstraction is a spontaneous process in the penta-coordinated 1a,b and 3a,b to yield tetracoordinated intermediates A. In the second step, phosphine coordinates to A to give 2 and 4. The rates of the reactions are thus functions of the concentrations of 1a/b or **3a/b** and are independent of C_{PR_3} .

In path II, phosphine coordination to 1a,b and 3a,b, yielding hexacoordinated intermediates **B**, precedes the α -hydrogen

Figure 3. Space-filling drawing of the molecular structure of **1b**, looking down an equatorial axis.

Figure 4. Eyring plot for the $1a, b \rightarrow 2$ conversion.

abstraction. Kinetic analyses of path II are given in the Supporting Information. In path II, both the steady-state or preequilibrium approaches show that the observed rates of the reactions are functions of concentrations of both **1a,b** (or **3a,b**) and PR₃. Two additional pathways in the formation of **2** were considered: both show the dependence of observed reaction rates on the concentration of PMe₃.⁸

Thus, the observations that the rates of the formation of alkyl alkylidene alkylidyne complexes 2 and 4 are independent of concentrations of PR₃ suggest that it follows path I in Scheme 4. A review of the crystal structure of the bis(alkylidene) complex W(CH₂SiMe₃)₂(=CHSiMe₃)₂(PMe₃) (1b)^{5b} supports this view. A space-filling drawing of the molecular structure of the pentacoordinated complex 1b (Figure 3) suggests that there is little open space around the W atom in 1b for the coordination of a second PMe₃ ligand, as would be required via path II. In path I, α -hydrogen abstraction eliminates a ligand as SiMe₄, converting *pentacoordinated* **1a,b** and **3a,b** to *tetracoordinated* intermediates A. The tetracoordinated A readily accepts the coordination of a second phosphine ligand, yielding the pentacoordinated products 2 and 4. Additional studies were conducted involving the reaction of **1b** with 1 equiv of PMe₂Ph and the thermal conversion of 1b to 2 in the absence of added phosphine. Both, discussed below, are consistent with path I.

The observed rate constants for the $1a/b \rightarrow 2$ conversion between 333.2(0.1) and 363.2(0.1) K were calculated from

⁽¹³⁾ See, e.g.: Espenson, J. H. Chemical Kinetics and Reaction Mechanism, 2nd Ed.; McGraw-Hill: New York, 1995; pp 46–49.

Figure 1, and they are given in Table 1. The Eyring plot (Figure 4) gives the activation parameters of the reaction: $\Delta H^{\ddagger} = 28.3 \cdot (1.7)$ kcal/mol and $\Delta S^{\ddagger} = 3(5)$ eu. It is not clear whether alkyl alkylidyne **1a**, bis(alkylidene) **1b**, or both undergo α -hydrogen abstraction reactions to give **3a,b**. The process may involve a cyclometalation transition state (Scheme 5). The activation parameters of the conversion ΔH^{\ddagger} and ΔS^{\ddagger} (near zero) are similar to other reported reactions through cyclometalation transition states for complexes containing $-CH_2CMe_3$ and/or $-CH_2SiMe_3$ ligands (Table 2).^{14–16}

Thermal Conversion of 1b to W(CH₂SiMe₃)(=CHSiMe₃)- $(\equiv CSiMe_3)(PMe_3)_2$ (2) and W(CH₂SiMe₃)₃($\equiv CSiMe_3$) (7) in the Absence of PMe₃. W(CH₂SiMe₃)₂(=CHSiMe₃)₂(PMe₃) (1b) dissolved in toluene- d_8 was heated at ca. 68(4) °C for 23 h. After cooling of the sample to room temperature, the ¹H NMR spectrum of the mixture revealed the formation of alkyl alkylidene alkylidyne complex 2 and phosphine-free 7, along with unreacted **1a,b**. ¹H NMR spectra before and after the heating are given in the Supporting Information. This observation is consistent with the equilibrium involving 7, PMe₃, and 1a (Scheme 6) that leads to partial PMe₃ dissociation from 1a to provide the free phosphine. At the same time, 1a,b undergoes the α -hydrogen abstraction to give the *intermediate* A (Scheme 4), which then picks up the free PMe₃, forming bisphosphine complex 2. The ratio of 1 vs 2 is ca. 0.63:1.00. The estimated rate constant for the formation of 2 using eq 1 and this ratio is ca. 1.2×10^{-5} s⁻¹. In comparison, the rate constant at 65.0-(0.1) °C is $1.4(0.2) \times 10^{-5} \text{ s}^{-1}$ (Table 1). It should be noted that there was no added free PMe3 in the current reaction. The PMe₃ ligand that reacts with **1a,b** to give **2** comes from the dissociation of **1a,b**. The fact that the estimated rate constant for this reaction is close to that obtained for systems with added PMe₃ (Table 1) is consistent with path I in Scheme 4. 1a,b readily dissociates PMe3 but undergoes a slow, rate-determining α -hydrogen abstraction. The intermediate **A** then quickly picks up PMe₃ dissociated from **1a,b** (Scheme 6) to give **2**.

Reaction of W(CH₂SiMe₃)₂(=CHSiMe₃)₂(PMe₃) (1b) with 1 equiv of PMe₂Ph. A mixture of W(CH₂SiMe₃)₂(=CHSiMe₃)₂-(PMe₃) (1b) and 1 equiv of PMe₂Ph in toluene- d_8 was heated at ca. 68(4) °C for 39 h. The solution was cooled to -20 °C, and its ¹H NMR spectrum revealed the formation of W(CH₂SiMe₃)(=CHSiMe₃)(=CSiMe₃)(PMe₃)₂ (2), W(CH₂- $SiMe_3$ (=CHSiMe_3) (=CSiMe_3) (PMe_2Ph)_2 (4), and a new mixed diphosphine complex, $W(CH_2SiMe_3)(=CHSiMe_3)(=$ CSiMe₃)(PMe₃)(PMe₂Ph) (8). The alkylidene proton resonances in the ¹H NMR spectrum of the reaction mixture is shown in Figure 5. This observation is consistent with the mechanistic pathways in Scheme 7. PMe₃ dissociates from **1b**, yielding **7**, which then reacts with PMe₂Ph to give an equilibrium mixture of W(CH₂SiMe₃)₃(\equiv CSiMe₃)(PMe₂Ph) (**3a**) \Rightarrow W(CH₂SiMe₃)₂- $(=CHSiMe_3)_2(PMe_2Ph)$ (3b). Both 1 and 3 undergo the α -hydrogen abstraction reactions to give the intermediates, which then react with PMe3 or PMe2Ph to give the three alkyl alkylidene alkylidyne complexes 2, 4, and 8.

Concluding Remarks

The equilibrium mixtures $W(CH_2SiMe_3)_3 (\equiv CSiMe_3)(PR_3)$ (1a/3a) $\rightleftharpoons W(CH_2SiMe_3)_2 (= CHSiMe_3)_2(PR_3)$ (1b/3b) have been shown to convert to alkyl alkylidene alkylidyne complexes $W(CH_2SiMe_3) (= CHSiMe_3) (\equiv CSiMe_3)(PR_3)_2$ (2 and 4). In other words, 1a/3a \rightleftharpoons 1b/3b are intermediates in the reactions of $W(CH_2SiMe_3)_3 (\equiv CSiMe_3)$ (7) with PR_3 to give 2 and 4. The kinetic studies, the first such studies of the formation of the complexes containing alkyl alkylidene alkylidyne ligands, show that the α -H abstraction reaction to form 2 follows first-order kinetics. These results suggest that the equilibrium mixture 1a \rightleftharpoons 1b undergoes a rate-determining, α -hydrogen abstraction reaction to give $W(CH_2SiMe_3)(=CHSiMe_3)(\equiv CSiMe_3)$. (PMe_3) (intermediate A), followed by fast coordination of PMe_3 to give 2.

It is interesting to note the difference in the reactivities of $W(CH_2SiMe_3)_3 \equiv CSiMe_3)$ (7) and its analogue $W(CH_2CMe_3)_3$ -(≡CCMe₃) toward PMe₃. W(CH₂CMe₃)₃(≡CCMe₃) reacts with neat PMe₃ in a sealed tube at 100 °C, giving the alkyl alkylidene alkylidyne complex W(CH₂CMe₃)(=CHCMe₃)(=CCMe₃)- $(PMe_3)_2$ through α -H abstraction and CMe_4 elimination, as Schrock and Clark reported (Scheme 1).¹ When ca. 1 equiv of PMe₃ was added to W(CH₂CMe₃)₃(\equiv CCMe₃) in benzene-d₆ at room temperature, a similar reaction giving $W(CH_2CMe_3)(=$ $CHCMe_3$ (= $CCMe_3$)(PMe_3)₂ and CMe₄ occurred.⁵ No adduct between alkylidyne $W(CH_2CMe_3)_3 (\equiv CCMe_3)$ and PMe_3 was *observed*. In comparison, PR_3 ($R_3 = Me_3$, Me_2Ph) coordinates readily to W(CH₂SiMe₃)₃(≡CSiMe₃) (7) to give the phosphine alkylidyne adducts W(CH₂SiMe₃)₃(=CSiMe₃)(PR₃) (1a and 3a). These phosphine alkylidyne adducts then undergo α -hydrogen migration to give the bis(alkylidene) tautomers W(CH₂SiMe₃)₂-(=CHSiMe₃)₂(PR₃) (**1b** and **3b**). An α -hydrogen abstraction, followed by PR3 coordination, gives the alkyl alkylidene alkylidyne complexes 2 and 4. Thus, in the current case involving the $-CH_2SiMe_3$ and $\equiv CSiMe_3$ ligands, there are intermediates [observed alkyl alkylidyne-PR₃ ⇐ bis(alkylidene)–PR₃ tautomeric mixtures and likely intermediate A] before the formation of two rare alkyl alkylidene alkylidyne complexes 2 and 4. The current work exemplifies the differences in -CH₂CMe₃ and -CH₂SiMe₃ ligand systems.⁴

Experimental Section

All manipulations were performed under a dry nitrogen atmosphere with the use of either a glovebox or standard Schlenk techniques. Solvents were purified by distillation from potassium benzophenone ketyl. NMR solvents were dried and stored over 5 Å molecular sieves. ¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker AC-250 or AMX-400 spectrometer and referenced to solvent (residual protons in the ¹H spectra). ³¹P, ²⁹Si, and HMQC (heteronuclear multiple quantum coherence) spectra were reformed on a Bruker AMX-400 spectrometer. ²⁹Si chemical shifts were referenced to SiMe₄.

Preparation of W(CH₂SiMe₃)(=CHSiMe₃)(≡CSiMe₃)(PMe₃)₂ (2). W(CH₂SiMe₃)₃(≡CSiMe₃) (7, 0.050 g, 0.0942 mmol) was dissolved in toluene (0.5 mL) in a Schlenk flask (50 mL). PMe₃ (ca. 10 equiv, 0.966 mmol) was added via a syringe to the vigorously stirred solution at −40 °C. The mixture was then stirred at room temperature for 24 h, followed by heating at 80 °C for another 24 h. All volatiles were removed in vacuo at room temperature, the residue was extracted with Et₂O, and the mixture was filtered. The filtrate was put in a freezer at −32 °C and then filtered to remove a small amount of a white solid impurity. After this second filtration, the volatiles in the solution were removed in vacuo to give 2 a dark brown solid (0.252 g, 45% yield).

⁽¹⁴⁾ Wood, C. D.; McLain, S. J.; Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 3210.
(15) Caulton, K. G.; Chisholm, M. H.; Streib, W. E.; Xue, Z.-L. J. Am. Chem.

Soc. **1991**, *113*, 6082. (16) Li, L.; Hung, M.; Xue, Z.-L. *J. Am. Chem. Soc.* **1995**, *117*, 12746.

13.8 13.6 13.4 13.2 13.0 12.8 12.6 12.4 12.2 12.0 11.8 11.6 11.4 11.2 11.0 10.8 10.6 10.4 10.2 **Figure 5.** ¹H NMR spectra (-20 °C) of a solution of W(CH₂SiMe₃)₂(=CHSiMe₃)₂(PMe₃) (**1b**) and 1 equiv of PMe₂Ph in toluene- d_8 after heating at ca. 68(4) °C for 39 h. This alkylidene proton region shows the formation of **2**, **4**, and mixed diphosphine alkyl alkylidene alkylidyne complex **8**.

2-syn: ¹H NMR (toluene- d_8 , 399.97 MHz, 23 °C, J in Hz) δ 10.54 (t, 1H, =CHSiMe₃, ${}^{3}J_{P-H} = 4.2$), 1.26 (t, 18H, PMe₃, ${}^{2}J_{P-H} = 3.6$), 0.33 (s, 9H, -SiMe₃), 0.23 (s, 9H, -SiMe₃), 0.19 (s, 9H, -SiMe₃), -0.04 (t, 2H, $-CH_2SiMe_3$, ${}^{3}J_{P-H} = 22.4$); ${}^{13}C{}^{1}H$ NMR (toluene- d_8 , 100.59 MHz, 23 °C, J in Hz) δ 339.0 (t, $\equiv CSiMe_3$, ${}^2J_{P-C} = 11.1$, ${}^1J_{W-C} =$ 161.8), 275.0 (t, =*C*HSiMe₃, ${}^{2}J_{P-C} = 11.1$, ${}^{1}J_{W-C} = 101.5$), 25.6 (t, $-CH_2SiMe_3$, ${}^2J_{P-C} = 6.2$, ${}^1J_{W-C} = 36.3$), 20.7 (t, PMe₃, ${}^1J_{P-C} = 14.5$), 5.2 (s, $-SiMe_3$), 3.7 (s, $-SiMe_3$), 2.4 (s, $-SiMe_3$); ³¹P{¹H} NMR (toluene- d_8 , 161.92 MHz, 23 °C, J in Hz) δ -2.2 (s, ${}^1J_{W-P} = 249$); ²⁹Si{¹H} NMR (toluene- d_8 , 79.46 MHz, -23 °C, J in Hz) δ -2.1 (s, $-CH_2SiMe_3$, -4.7 (s, $=CHSiMe_3$), -23.1 (s, $=CSiMe_3$). ¹H and ¹³C assignments were confirmed by DEPT, HMQC, and ¹H-gated-decoupled-13C NMR. 2-anti: 1H NMR (toluene-d₈, 399.97 MHz, 23 °C, J in Hz) δ 13.46 (t, 1H, =CHSiMe₃, ${}^{3}J_{P-H} = 5.6$), 1.29 (t, 18H, PMe₃, ${}^{2}J_{P-H} = 3.2$), 0.32 (s, 9H, $-SiMe_{3}$), 0.22 (s, 9H, $-SiMe_{3}$), 0.06 (s, 9H, $-\text{Si}Me_3$, -0.37 (t, 2H, $-CH_2\text{Si}Me_3$, ${}^{3}J_{P-H} = 21.4$); ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (toluene- d_8 , 100.59 MHz, 23 °C, J in Hz) δ 343.5 (t, $\equiv CSiMe_3$, $^2J_{P-C}$ = 10.5), 273.8 (t, =CHSiMe₃, ${}^{2}J_{P-C}$ = 11.1) 34.0 (t, -CH₂SiMe₃, ${}^{2}J_{P-C}$ = 6.2), 20.7 (t, overlapping with 2-syn and toluene- d_8 peaks, PMe₃), 6.4 (s, $-SiMe_3$), 3.1 (s, $-SiMe_3$), 2.0 (s, $-SiMe_3$); ³¹P{¹H} NMR (toluene- d_8 , 161.92 MHz, 23 °C, J in Hz) δ –2.4 (s). Anal. Calcd: C, 36.36; H, 8.14. Found: C, 36.43; H, 8.17.

Preparation of W(CH₂SiMe₃)(=CHSiMe₃)(=CSiMe₃)(PMe₂Ph)₂ (4). W(CH₂SiMe₃)₃(≡CSiMe₃) (7, 0.050 g, 0.0942 mmol) was dissolved in toluene (0.5 mL) in a Schlenk tube (10 mL). PMe₂Ph (ca. 10 equiv, 0.970 mmol) was added with a syringe to the vigorously stirred solution at -42 °C. The mixture was then stirred at room temperature for 24 h, followed by heating at 78-79 °C for another 24 h. All volatiles were removed in vacuo at 57 °C for 6 h to give a viscous, dark brown liquid (0.475 g, 70% yield). 4-syn: ¹H NMR (toluene-d₈, 399.97 MHz, 23 °C, J in Hz) δ 10.89 (t, 1H, =CHSiMe₃, ${}^{3}J_{P-H}$ = 3.7), 7.4–7.0 (m, 5H, C_6H_5), 1.68 (t, 6H, ${}^{2}J_{P-H} = 3.6$, PMe_aMe_bPh), 1.65 (t, 6H, ${}^{2}J_{P-H} =$ 3.6, PMe_aMe_bPh), 0.44 (s, 9H, -SiMe₃), 0.28 (s, 9H, -SiMe₃), -0.03 (t, 2H, $-CH_2SiMe_3$, ${}^{3}J_{P-H} = 21.5$), -0.23 (s, 9H, $-SiMe_3$); ${}^{13}C{}^{1}H$ NMR (toluene- d_8 , 100.59 MHz, 23 °C, J in Hz) δ 341.6 (t, $\equiv CSiMe_3$, ${}^{2}J_{P-C} = 10.2, {}^{1}J_{W-C} = 162.7), 277.7$ (t, =*C*HSiMe₃, ${}^{2}J_{P-C} = 11.0,$ ${}^{1}J_{W-C} = 103.5$, 138–124 (C₆H₅), 28.5 (t, -CH₂SiMe₃, ${}^{2}J_{P-C} = 5.6$, ${}^{1}J_{W-C} = 37.5$), 23.5 (t, ${}^{1}J_{P-C} = 15.3$, PMe_aMe_b), 20.6 (t, ${}^{1}J_{P-C} = 15.9$, PMe_aMe_b), 4.7 (s, -SiMe₃), 3.9 (s, -SiMe₃), 2.6 (s, -SiMe₃); ³¹P{¹H} NMR (toluene- d_8 , 161.92 MHz, 23 °C, J in Hz) δ 12.6 (s, ${}^1J_{W-P} =$ 250); ²⁹Si{¹H} NMR (toluene- d_8 , 79.46 MHz, -20 °C, J in Hz) δ -2.8 $(s, -CH_2SiMe_3), -3.8 (s, =CHSiMe_3), -22.1 (s, =CSiMe_3).$ ¹H and ¹³C assignments were confirmed by HMQC experiments. 4-anti: ¹H NMR (toluene- d_8 , 399.97 MHz, 23 °C, J in Hz) δ 13.73 (t, 1H, = CHSiMe₃, ${}^{3}J_{P-H} = 4.8$), 7.4–7.0 (m, 5H, C₆H₅), 1.55 (t, 6H, PMe_a-Me_bPh, ${}^{2}J_{P-H} = 3.2$), 1.48 (t, 6H, PMe_aMe_bPh, ${}^{2}J_{P-H} = 3.0$), 0.20 (s,

9H, $-SiMe_3$), 0.18 (s, 9H, $-SiMe_3$), 0.15 (t, 2H, $-CH_2SiMe_3$, ${}^{3}J_{P-H} =$ 21.6), -0.05 (s, 9H, $-SiMe_3$); ${}^{13}C{}^{1}H}$ NMR (toluene- d_8 , 100.59 MHz, 23 °C, J in Hz) δ 344.6 (t, $\equiv CSiMe_3$, ${}^{2}J_{P-C} =$ 11.9), 272.9 (t, $=CHSiMe_3$, ${}^{2}J_{P-C} =$ 8.5), 138–124 (C_6H_5), 36.0 (t, $-CH_2SiMe_3$, ${}^{2}J_{P-C} =$ 4.9), 19.7 (t, ${}^{1}J_{P-C} =$ 14.7, PMe_aMe_b), 18.9 (t, ${}^{1}J_{P-C} =$ 13.8, PMe_aMe_b), 6.0 (s, $-SiMe_3$), 3.1 (s, $-SiMe_3$), 1.9 (s, $-SiMe_3$); ${}^{31}P{}^{1}H{}$ NMR (toluene- d_8 , 161.92 MHz, 23 °C, J in Hz) δ 10.9 (s, ${}^{1}J_{W-P} =$ 250). Anal. Calcd: C, 46.79; H, 7.29. Found: C, 46.41; H, 7.19.

Thermal Conversion of W(CH₂SiMe₃)₂(=CHSiMe₃)₂(PMe₃) (1b). W(CH₂SiMe₃)₂(=CHSiMe₃)₂(PMe₃) (1b, 42 mg) was dissolved in toluene- d_8 (0.5 mL) in a J. Young NMR tube. The solution was heated at ca. 68(4) °C for 23 h. W(CH₂SiMe₃)₃(=CHSiMe₃) (7) and W(CH₂-SiMe₃)(=CHSiMe₃)(=CHSiMe₃)(PMe₃)₂ (2-*syn*, 2-*anti*) were found as products in ca. 0.83:1.00 ratio along with decomposed W(CH₂SiMe₃)₂-(=CHSiMe₃)₂(PMe₃) (1b).⁸

Reaction of W(CH₂SiMe₃)₂(=CHSiMe₃)₂(PMe₃) (1b) with 1 equiv of PMe₂Ph. W(CH₂SiMe₃)₂(=CHSiMe₃)₂(PMe₃) (1b, 42 mg) and 1 equiv of PMe₂Ph were dissolved in toluene-d₈ (0.5 mL) in a J. Young NMR tube. The mixture was heated at ca. 68(4) °C for 39 h. The reaction was found to give three products: W(CH2SiMe3)(=CHSiMe3)- $(\equiv CHSiMe_3)(PMe_3)_2$ (2-syn, 2-anti); W(CH₂SiMe₃)(=CHSiMe₃)(= CHSiMe₃)(PMe₂Ph)₂ (4-syn, 4-anti); a new, mixed diphosphine alkyl alkylidene alkylidyne complex, $W(CH_2SiMe_3)(=CHSiMe_3)(=$ CHSiMe₃)(PMe₃)(PMe₂Ph) (8). 8-syn:¹⁷ ¹H NMR (toluene-d₈, 399.97 MHz, 23 °C, J in Hz) δ 10.70 (t, 1H, =CHSiMe₃, ³J_{P-H} = 3.8), 7.6-7.0 (m, 5H, C_6H_5), 1.64 (d, 3H, ${}^{2}J_{P-H} = 8.0$ Hz, PMe_AMe_BPh), 1.62 (d, 3H, ${}^{2}J_{P-H} = 8.0$ Hz, PMe_AMe_BPh), 1.28 (d, 9H, ${}^{2}J_{P-H} = 8.4$ Hz, PMe₃), 0.46 (s, 9H, -SiMe₃), 0.28 (s, 9H, -SiMe₃), 0.02 (s, 9H, $-SiMe_3$), -0.13 (t, 2H, $-CH_2SiMe_3$, ${}^3J_{P-H} = 14.0$); ${}^{13}C{}^{1}H$ NMR (toluene- d_8 , 100.59 MHz, 23 °C, J in Hz) δ 339.8 (t, $\equiv CSiMe_3$, $^2J_{P-C}$ = 9.7), 275.8 (t, =*C*HSiMe₃, ${}^{2}J_{P-C}$ = 8.8), 151–124 (*C*₆H₅), 25.0 (t, $-CH_2SiMe_3$, ${}^2J_{P-C}$ =6.5), 23.4 (s, PMe₃), 9.0 (t, ${}^1J_{P-C}$ = 16.1, PMe_a-Me_b), 17.4 (t, ${}^{1}J_{P-C} = 19.6$, PMe_aMe_b), 4.3 (s, $-SiMe_3$), 3.1 (s, $-SiMe_3$), $3.0 (s, -SiMe_3).$

Kinetic Studies of the Formation of 2 and 4. In the kinetic studies of the formation of **2**, at least a 10-fold excess of PMe₃ ($C_{PMe_3} = 1.42-2.31$ M) was added through vacuum transfer to a mixture of W(CH₂Si-Me₃)₃(=CHSiMe₃) (**7**, 29.8–37.8 mg, 0.0562–0.0712 mmol, ca. 0.10–0.14 M), 4,4'-dimethylbiphenyl (an internal standard), and toluene- d_8 in a J. R. Young's NMR tube. The sample was kept at 23 °C overnight to establish the **1a** = **1b** equilibrium. The sample was then placed in a circulation bath between 60.0 (333.2 K) and 90.0 °C (363.2 K). After a measured period of time, the NMR tube was removed from the

⁽¹⁷⁾ Several peaks of 2, 4, and 8 overlap in the NMR spectrum of the mixture (Supporting Information). 8-anti was not fully identified.

Scheme 7

circulation bath and placed in a dry ice/ethanol bath at -78 °C, and ¹H NMR spectra were acquired at room temperature. Integration of the ¹H –P*Me*₃ resonances at 1.26–1.29 ppm for 2-*syn* and 2-*anti* versus an internal standard was used to give the kinetic plots in Figure 1. Both isomers were integrated together, since the peaks overlap in the ¹H NMR spectra. The average slope of at least two experiments was used to calculate k_{obs} . The enthalpy (ΔH^{\pm}) and entropy (ΔS^{\pm}) were calculated from an unweighted nonlinear least-squares procedure. The uncertainties in ΔH^{\pm} and ΔS^{\pm} were computed from the error propagation formulas developed by Girolami and co-workers.¹⁸

Similar to the kinetic studies of the conversion of **1a,b** to **2**, the conversion of **3a,b** to **4** was monitored by ¹H NMR. A mixture of W(CH₂SiMe₃)₃(=CHSiMe₃) (**7**), PMe₂Ph, and 4,4'-dimethylbiphenyl (an internal standard) in toluene- d_8 ($C_{3-0} = 0.123$ M, $C_{PMe_2Ph-0} = 3.79$ M or $C_{3-0} = 0.107$ M, $C_{PMe_2Ph-0} = 1.45$ M) in a J. R. Young's NMR tube was heated in a circulation bath at 75.0 °C (348.2 K) for a measured amount of time. The reaction was then quenched in dry ice/ ethanol bath at -78 °C. ¹H NMR spectra were acquired at room temperature, and the integration of the ¹H -PMe₂Ph resonances at 1.61–1.64 ppm for **4** versus an internal standard was used to give the first-order kinetic plot (Figure 2).

Attempted Reactions of PCy₃ and PPh₃ with W(CH₂SiMe₃)(\equiv CSiMe₃) (7). Two separate experiments were conducted with W(CH₂-SiMe₃)₃(\equiv CSiMe₃) (7, 50 mg), 4,4'-dimethylbiphenyl (an internal standard), and toluene-*d*₈ in J. R. Young's NMR tubes. PCy₃ or PPh₃ respectively was added in at least a 10-fold excess. The solution was heated for 2 days at 100 °C. No reaction or adducts were observed by ¹H NMR spectroscopy.

Acknowledgment. Acknowledgment is made to the National Science Foundation (Grant CHE-0516928) for financial support. We thank a reviewer for suggesting the studies of the conversion of the $1a \rightleftharpoons 1b$ mixture to 2 and 7 in the absence of PMe₃ as well as the conversion of the $1a \rightleftharpoons 1b$ mixture to 2, 4, and 8 in the presence of PMe₂Ph. We also thank Michael D. Bleakley for assistance.

Supporting Information Available: NMR spectra of **2** and **4**, NMR spectra of the mixtures from the thermal conversion of **1b** in the absence of added phosphine, k_{obs} values at different C_{PMe_3} at 338.2(0.1) K, and considerations of alternative pathways to **2** and **4**. This material is available free of charge via the Internet at http://pubs.acs.org.

JA067914R

⁽¹⁸⁾ Morse, P. M.; Spencer, M. D.; Wilson, S. R.; Girolami, G. S. Organometallics **1994**, *13*, 1646.