A R T I C L E S
Published on Web 05/19/2007

Preparation of Tungsten Alkyl Alkylidene Alkylidyne Complexes and Kinetic Studies of Their Formation

Laurel A. Morton, Shujian Chen, He Qiu, and Zi-Ling Xue*
Contribution from the Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996

Received November 6, 2006; E-mail: xue@ion.chem.utk.edu

Abstract

An equilibrium mixture of alkyl alkylidyne $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)$ (1a) and its bis(alkylidene) tautomer $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right)(1 \mathbf{b})$ has been found to undergo an α-hydrogen abstraction reaction in the presence of PMe_{3} to form alkyl alkylidene alkylidyne $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)$ $\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}$ (2). In the presence of PMe_{3}, the formation of 2 follows first-order kinetics, and the observed rate constant was found to be independent of the concentration of PMe_{3}. The activation parameters for the formation of 2 are $\Delta H^{\ddagger}=28.3(1.7) \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\ddagger}=3(5) \mathrm{eu}$. In the presence of $\mathrm{PMe}_{2} \mathrm{Ph}$, an equilibrium mixture of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(3 a)$ and its bis(alkylidene) tautomer $\mathrm{W}\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{SiMe}_{3}\right)_{2}(=\mathrm{CHSiMe})_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(3 \mathrm{Bb})$ was similarly converted to $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)(=\mathrm{CHSiMe} 3)\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{2^{-}}\right.$ $\mathrm{Ph})_{2}$ (4). The observed rate of this reaction was also independent of the concentration of $\mathrm{PMe}_{2} \mathrm{Ph}$. These observations suggest a pathway in which the tautomeric mixtures $\mathbf{1 a , b}$ and $\mathbf{3 a , b}$ undergo rate-determining, α-hydrogen abstraction, followed by phosphine coordination, resulting in the formation of the alkyl alkylidene alkylidyne complexes 2 and 4.

Alkyl alkylidene alkylidyne complexes are unique compounds containing single, double, and triple bonds to one atom in a single molecule. The first such complex, $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)(=$ CHCMe 3) $\left(\equiv \mathrm{CCMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}(5$, Scheme 1a), reported by Clark and Schrock, was prepared through α-hydrogen abstraction by heating a solution of alkyl alkylidyne complex $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{3^{-}}$ $\left(\equiv \mathrm{CCMe}_{3}\right)$ in liquid PMe_{3} at $100{ }^{\circ} \mathrm{C} .{ }^{1}$ The crystal structure of an analogous complex, $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)\left(=\mathrm{CHCMe}_{3}\right)\left(\equiv \mathrm{CCMe}_{3}\right)$ (dmpe) (6) containing a chelating phosphine ligand dmpe $\left(\mathrm{Me}_{2^{-}}\right.$ $\mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}$), was reported by Churchill and Youngs. ${ }^{2} \mathbf{6}$, unlike the bis-PMe ${ }_{3}$ complex $\mathbf{5}$, exhibits cis coordination of the chelating phosphine with the alkylidyne ligand in the axial position (Scheme 1a). It is hypothesized that the phosphine ligands in $\mathbf{5}$ are coordinated trans to one another, and the other ligands occupy the equatorial sites in a trigonal bipyramidal configuration. Rhenium alkyl alkylidene alkylidyne complexes $\operatorname{Re}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{2}\left(=\mathrm{CHCMe}_{3}\right)\left(\equiv \mathrm{CCMe}_{3}\right)$ and $\operatorname{Re}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)(=$ $\left.\mathrm{CHCMe}_{3}\right)\left(\equiv \mathrm{CCMe}_{3}\right)(\mathrm{py})_{2}(\mathrm{OTf})$, as well as their derivatives, have also been reported (Scheme 1b). ${ }^{3}$

Earlier we had found unusual reactions of d^{0} tantalum bis(alkylidene) complexes, such as $\mathrm{Ta}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)_{2}-$ $\left(\mathrm{PMe}_{3}\right)_{2}$, with silanes. ${ }^{4}$ The reactivities of the d^{0} tungsten complexes containing $\mathrm{Me}_{3} \mathrm{SiCH}=$ and $\mathrm{Me}_{3} \mathrm{SiC} \equiv$ ligands toward silanes were of interest to us. We thus attempted to prepare $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}(\mathbf{2})$ and $\mathrm{W}\left(\mathrm{CH}_{2}-\right.$

[^0]

6-syn

$\left.\mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(4)$, the β-Si analogs of 5. In these studies, we reported that $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}(\equiv$ CSiMe_{3}) (7) reacts with PMe_{3} and $\mathrm{PMe}_{2} \mathrm{Ph}$, forming adducts $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PR}_{3}\right)\left(\mathrm{R}_{3}=\mathrm{Me}_{3}, \mathbf{1 a}\right.$, and $\mathrm{Me}_{2} \mathrm{Ph}$, 3a). ${ }^{5}$ These adducts subsequently undergo α-hydrogen migration to give bis(alkylidene) tautomers $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\left(=\mathrm{CHSiMe}_{3}\right)_{2}-$ $\left(\mathrm{PR}_{3}\right)\left(\mathrm{R}_{3}=\mathrm{Me}_{3}, \mathbf{1 b}\right.$, and $\left.\mathrm{Me}_{2} \mathrm{Ph}, \mathbf{3 b}\right)$ and reach equilibria,

[^1]
Scheme 2

Scheme 3

Diastereotopic 4
leading to a rare case in which both alkyl alkylidyne complexes and their bis(alkylidene) tautomers were observed. ${ }^{5-7}$

We have recently found that heating the tautomeric equilibrium mixtures of $\mathbf{1 a} / \mathbf{3 a} \rightleftharpoons \mathbf{1 b} / \mathbf{3} \mathrm{b}$ in the presence of phosphines leads to α-hydrogen abstraction and the formation of alkyl alkylidene alkylidyne complexes $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)$ $\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}$ (2) and $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)(\equiv$ $\left.\mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (4) (Scheme 2). Both 2 and 4 exist as mixtures of two rotamers, 2-syn and 2-anti and 4-syn and 4-anti, as observed by NMR spectroscopy. Kinetic studies of the formation of 2 and $\mathbf{4}$ suggest that $\mathbf{1 a} / \mathbf{b}$ and $\mathbf{3 a} / \mathbf{b}$ undergo α-hydrogen abstraction, followed by the coordination of phosphine, to give the alkyl alkylidene alkylidyne complexes. In other words, the first phosphine PR_{3} ligand coordinates to $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)(7)$, forming an adduct and its bis(alkylidene) tautomer 1a/b (3a/b) (Scheme 2). This mixture then undergoes α-hydrogen abstraction to give an intermediate containing metal-carbon single, double, and triple bonds, prior to the coordination of the second phosphine ligand to give 2 (4). These studies offer the first direct insight into the formation of the unique alkyl alkylidene alkylidyne complexes. Our preparation and characterization of $\mathbf{2}$ and $\mathbf{4}$, as well as kinetic studies of their formation, are reported here.
(6) To our knowledge, there is one other reported direct observation of an alkyl alkylidyne \rightleftharpoons bis(alkylidene) exchange: Chen, T.-N.; Wu, Z.-Z.; Li, L.-T.; Sorasaenee, K. R.; Diminnie, J. B.; Pan, H.-J.; Guzei, I. A.; Rheingold, A. L.; Xue, Z.-L. J. Am. Chem. Soc. 1998, 120, 13519.

Results and Discussion

Synthesis and Characterization of 2 and 4. High-oxidationstate alkylidyne complexes such as $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)$ (7), highly electron deficient, are generally stabilized by the coordination of phosphine ligands. When PR_{3} species $\left(\mathrm{R}_{3}=\right.$ $\left.\mathrm{Me}_{3}, \mathrm{Me}_{2} \mathrm{Ph}\right)$ were added to solutions of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}(\equiv$ $\left.\mathrm{CSiMe}_{3}\right)$ (7), phosphine adducts $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)$ $\left(\mathrm{PR}_{3}\right)(\mathbf{1 a} / 3 \mathbf{a})$ were observed. The alkyl alkylidyne phosphine complexes then undergo tautomerization to bis(alkylidenes) $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PR}_{3}\right)(\mathbf{1 b} / \mathbf{3 b}) .{ }^{5}$ The exchanges are reversible and reach equilibria (Scheme 2).

Upon heating of these equilibrium systems containing phosphines PMe_{3} and $\mathrm{PMe}_{2} \mathrm{Ph}$, the mixtures were found to yield alkyl alkylidene alkylidyne complexes $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)$ $\left(=\mathrm{CHSiMe}_{3}\right)\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}$ (2) and $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)(=$ $\left.\mathrm{CHSiMe}_{3}\right)\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(4)$, respectively, through α-hydrogen abstraction reactions (Scheme 2). The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$ NMR spectral analysis of $\mathbf{2}$ revealed two distinct rotamers, $\mathbf{2}$-syn and 2-anti, in solution. ${ }^{3 b, 8,9}$ The ratio of the two is $7: 1$ on the basis of ${ }^{1} \mathrm{H}$ NMR integration. It is likely that $\mathbf{2}$-syn is the major rotamer. In the 2 -syn rotamer, the $-\mathrm{SiMe}_{3}$ group on the alkylidene ligand points toward the alkylidyne ligand. Such rotameric mixtures were also observed in alkylidene alkylidyne complexes $\operatorname{Re}\left(=\mathrm{CHCMe}_{3}\right)\left(\equiv \mathrm{CCMe}_{3}\right)(\mathrm{OR})_{2}{ }^{9 \mathrm{aa}}$ In the dmpe complex $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)\left(=\mathrm{CHCMe}_{3}\right)\left(\equiv \mathrm{CCMe}_{3}\right)($ dmpe $)(6)$, the only isomer observed in the X-ray crystal structure was the syn isomer (Scheme 1a). ${ }^{2}$ One isomer of octahedral $\operatorname{Re}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)$ $\left(=\mathrm{CHCMe}_{3}\right)\left(\equiv \mathrm{CCMe}_{3}\right)(\text { py })_{2}(\mathrm{OTf})($ Scheme 1b) was observed, and it was believed to be the syn isomer. ${ }^{3 b}$

NMR spectroscopic characterization $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{31} \mathrm{P},{ }^{29} \mathrm{Si},{ }^{1} \mathrm{H}\right.$ -gated-decoupled ${ }^{13} \mathrm{C}$, and HMQC) of the more abundant 2 -syn suggests that the PMe_{3} ligands coordinate trans to one another. One resonance in the ${ }^{31} \mathrm{P}$ NMR spectrum for 2-syn was observed at $-2.21 \mathrm{ppm}\left({ }^{1} J_{\mathrm{P}-\mathrm{w}}=124.7 \mathrm{~Hz}\right)$. The two trans- PMe_{3} ligands exhibit virtual coupling and appear as a pseudotriplet in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra at 1.26 and 20.74 ppm , respectively. ${ }^{10}$ Three singlet resonances of the $-\mathrm{SiMe}_{3}$ groups were observed in the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{29} \mathrm{Si}$ NMR spectra of 2 -syn. The ${ }^{1} \mathrm{H}$ resonances of the α-hydrogen atoms in $-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ appear as a triplet at -0.036 ppm with a large ${ }^{2} J_{\mathrm{P}-\mathrm{H}}=22.4 \mathrm{~Hz}$. In the tantalum bis(alkylidene) bis(phosphine) complex $\mathrm{Ta}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)$ $\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{2}$, where the phosphine ligands are trans to one another, a large coupling constant ($\left.{ }^{2} J_{\mathrm{P}-\mathrm{H}}=19.8 \mathrm{~Hz}\right)$ was observed as well. ${ }^{11}$ The resonance of the alkylidyne C atom in 2-syn appears at 339.0 ppm as a triplet $\left({ }^{2} J_{\mathrm{P}-\mathrm{C}}=11.1 \mathrm{~Hz}\right.$; $\left.{ }^{1} J_{\mathrm{W}-\mathrm{C}}=161.8 \mathrm{~Hz}\right)$ due to its coupling with two equivalent P atoms, and it is upfield shifted from that (343.27 ppm) of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)$ (7). ${ }^{12}$ The alkylidene C and alkyl $\alpha-\mathrm{C}$ atoms appear as triplets as well at $275.0 \mathrm{ppm}\left({ }^{2} J_{\mathrm{P}-\mathrm{C}}=\right.$ $\left.11.1 \mathrm{~Hz} ;{ }^{1} J_{\mathrm{W}-\mathrm{C}}=101.5 \mathrm{~Hz}\right)$ and $25.63 \mathrm{ppm}\left({ }^{2} J_{\mathrm{P}-\mathrm{C}}=6.2 \mathrm{~Hz}\right.$, ${ }^{1} J_{\mathrm{W}-\mathrm{C}}=36.3 \mathrm{~Hz}$), respectively. Most of the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{31} \mathrm{P}$

[^2]Scheme 4. Two Proposed Pathways in the Formation of 2 and 4

Path I $\underbrace{R_{3}=M e_{3}, ~ 1 a ; ~} \underbrace{R_{3}=M e_{2} P h, 3 a}$

Path II
 $\underset{\text { Fast }}{\substack{k_{3}}} \mathbb{k _ { 3 }}+\begin{gathered}k_{3} \\ +\mathrm{PR}_{3}\end{gathered}$

Intermediate A

Intermediate B

Scheme 5. Cyclometalation Transition States in the Formation of 2 and 4

resonances of 2-anti are shifted only slightly from those of 2-syn. One exception in the ${ }^{1} \mathrm{H}$ NMR spectrum is that the alkylidene proton, $\mathrm{W}=\mathrm{CHSiMe} 3$, is significantly shifted in 2-anti to 13.46 ppm from 10.54 ppm for 2-syn. Likewise, the $\mathrm{WCH}_{2} \mathrm{SiMe}_{3}$ resonance in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum at 34.0 ppm is shifted in 2-anti from 25.6 ppm in 2-syn.

Synthesis and Characterization of 4. $\mathrm{PMe}_{2} \mathrm{Ph}$ is bulkier than PMe_{3}, and the phenyl group often acts as an electronwithdrawing group. In the presence of $\mathrm{PMe}_{2} \mathrm{Ph}$, its adduct, $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(\mathbf{3 a})$ and $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2^{-}}$ $\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(\mathbf{3 b})$ also undergo α-hydrogen abstraction, yielding the alkyl alkylidene alkylidyne complex $\mathrm{W}\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}(4)$. As for 2, there are 4-syn and 4-anti rotamers in solution (Scheme 2) in a ratio of 4 -syn:4-anti $=27: 1$ on the basis of the ${ }^{1} \mathrm{H}$ NMR spectrum.

The methyl groups on the $\mathrm{PMe}_{2} \mathrm{Ph}$ ligand in $\mathbf{4}$ are diastereotopic, as shown in the Newman projection down a W-P bond in Scheme 3. In addition, the two phosphine ligands show virtual coupling. The $M e-\mathrm{P}$ groups of 4 -syn thus appear as two pseudotriplets in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. ${ }^{8}$ One ${ }^{1} \mathrm{H}$ NMR resonance of the $M e-\mathrm{P}$ groups on 4 -anti overlaps with those of 4-syn. ${ }^{8}$

Attempts were made to prepare compounds analogous to $\mathbf{3}$ and 4 using PCy_{3} or PPh_{3}. Addition of these bulky phosphines to solutions of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)(7)$ in toluene- d_{8}, and

Figure 1. Kinetic plots for the conversion of 1a,b to 2. $C_{\mathbf{1}-0}$ and $C_{\mathbf{2}-t}$ are concentrations of $\mathbf{1 a , b}$ (total) at time $=0$ and in 2 (total) at time $=t$, respectively.

Figure 2. Kinetic plot for the formation of 4 at 348.2 K (ratio $=\left[\mathrm{PMe}_{2}{ }^{-}\right.$ $\mathrm{Ph}] /[\mathbf{3 a}, \mathbf{b}]=13.5$). $C_{\mathbf{3}-0}$ and C_{4-t} are the concentrations of $\mathbf{3 a}, \mathbf{b}$ (total) at time $=0$ and 4 (total) at time $=t$, respectively.
their subsequent heating at $100{ }^{\circ} \mathrm{C}$ for 2 days yielded no products. No complexation was observed between PPh_{3} or PCy_{3} and $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)$ (7). Perhaps the bulkiness of PCy_{3} and PPh_{3} prevents them from coordinating to 7 to form adducts, a prerequisite for the formation of their alkyl alkylidene alkylidyne derivatives.

Kinetic Study of the Conversion of $1 \mathrm{a}, \mathrm{b}$ to 2 and 3a,b to 4. In the presence of phosphines, kinetic studies of the $\alpha-\mathrm{H}$ abstraction reactions to yield 2 and 4 (Scheme 2) have been conducted. The conversion of $\mathbf{1}$ to $\mathbf{2}$ was found to follow firstorder kinetics (eq 1), ${ }^{8,13}$ as revealed by the ${ }^{1} \mathrm{H}$ NMR spectra of the reaction between $333.2(0.1)$ and $358.2(0.1) \mathrm{K}$ (Figure 1). The observed rate constant $k_{\text {obs }}\left[1.5(0.2) \times 10^{-5} \mathrm{~s}^{-1}\right]$ at 338 K was found to be independent of PMe_{3} concentrations, when $C_{\text {PMe }_{3}}$ ranged from 1.51 to $3.06 \mathrm{M}\left(\mathrm{PMe}_{3}\right.$ in $12-30$-fold excess): ${ }^{8}$

$$
\begin{equation*}
\mathrm{d} C_{1} / \mathrm{d} t=-k_{\mathrm{obs}} C_{1} \tag{1}
\end{equation*}
$$

$$
C_{1}: \text { concentration of } \mathbf{1 a , b}
$$

The kinetics of the reaction to give 4 was also studied at 348.2 K by a kinetic equation similar to eq 1 . These kinetic studies with different $C_{\mathrm{PMe}_{2} \mathrm{Ph}} / C_{3}$ ratios yielded the observed rate

Table 1. Observed Rate Constants (k_{obs}) in the Formation of $\mathbf{2}^{\text {a }}$

$T(\mathrm{~K})$	$10^{5} \mathrm{~K}_{\text {obs }}\left(\mathrm{s}^{-1}\right)^{b}$	$T(\mathrm{~K})$	$10^{5} \mathrm{~K}_{\text {obs }}\left(\mathrm{s}^{-1}\right)^{b}$
$333.2(0.1)$	$0.73(0.08)$	$353.2(0.1)$	$9.7(0.5)$
$338.2(0.1)$	$1.4(0.2)$	$358.2(0.1)$	$15.6(0.7)$
$343.2(0.1)$	$2.3(0.3)$	$363.2(0.1)$	$25.7(1.2)$
$348.2(0.1)$	$5.0(0.5)$		

${ }^{a}$ Solvent: toluene- $d_{8} .{ }^{b}$ The largest random uncertainty is $\delta k_{\mathrm{ran}} / k=0.2 /$ $1.4=0.14$. The total uncertainty $\delta k / k=0.15$ was calculated from $\delta k_{\mathrm{ran}} / k$ and the estimated systematic uncertainty $\delta k_{\text {sys }} / k=0.05$ by $\delta k / k=\left[\left(\delta k_{\mathrm{ran}} /\right.\right.$ $\left.k)^{2}+\left(\delta k_{\text {sys }} / k\right)^{2}\right]^{1 / 2}$.

Table 2. Activation Parameters in Reactions through Cyclometalation Transition States

reacns	$\Delta H^{\ddagger}(\mathrm{kcal} / \mathrm{mol})$	$\Delta S^{\ddagger}(\mathrm{eu})$
$\mathrm{CpTaCl}_{2}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{2} \rightarrow \mathrm{CpTaCl}_{2}\left(=\mathrm{CHCMe}_{3}\right)^{14}$	$21(2)$	$-4(10)$
$\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right) \rightarrow$	$27.5(0.6)$	$-2.0(1.7)$
$\left.\mathrm{W}_{2} \mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(\equiv \mathrm{CCMe}_{3}\right)^{15}$		
$\mathrm{~W}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(\equiv \mathrm{CCMe}_{3}\right) \rightarrow$	$25.4(0.8)$	$-9.5(1.9)$
$\left.\mathrm{W}_{2} \mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{3}=\mathrm{CSMe}_{3}{ }^{15}$		
$\mathrm{Ta}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{5} \rightarrow \mathrm{Ta}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(=\mathrm{CHSiMe}_{3}\right)^{16}$	$21.6(1.4)$	$-5(5)$

Scheme 6

constant $k_{\mathrm{obs}}{ }^{\prime}=5.1(0.2) \times 10^{-5} \mathrm{~s}^{-1}$ at $348.2(0.1) \mathrm{K}$ for the formation of 4. The observed rate constant (k_{obs}) of $1.5(0.2) \times$ $10^{-5} \mathrm{~s}^{-1}$ at $348.2(0.1) \mathrm{K}$ for the PMe_{3} complexes $\mathbf{1 a , b}$ is smaller than that involving bulkier $\mathrm{PMe}_{2} \mathrm{Ph}$ complexes 3a,b.

The observations that k_{obs} for the formation of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)$ $\left(=\mathrm{CHSiMe}_{3}\right)\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}(\mathbf{2})$ and $k_{\text {obs' }}{ }^{\prime}$ for the formation of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (4) are independent of phosphine concentrations suggest that the coordination of the second phosphine molecule is not the ratedetermining step. Two paths were considered. ${ }^{8}$ In path I (Scheme 4), tautomeric alkyl alkylidyne-bis(alkylidene) mixtures 1a,b and $\mathbf{3 a}, \mathbf{b}$ undergo a rate-determining, α-hydrogen abstraction to give monophosphine, alkyl alkylidene alkylidyne intermediates \mathbf{A} which then bind PR_{3} to give the bisphosphine products 2 and 4. In this pathway, the α-hydrogen abstraction is a spontaneous process in the penta-coordinated $\mathbf{1 a , b}$ and $\mathbf{3 a}, \mathbf{b}$ to yield tetracoordinated intermediates \mathbf{A}. In the second step, phosphine coordinates to \mathbf{A} to give $\mathbf{2}$ and $\mathbf{4}$. The rates of the reactions are thus functions of the concentrations of $\mathbf{1 a} / \mathbf{b}$ or $\mathbf{3 a} / \mathbf{b}$ and are independent of $C_{\mathrm{PR}_{3}}$.

In path II, phosphine coordination to $\mathbf{1 a , b}$ and $\mathbf{3 a}, \mathbf{b}$, yielding hexacoordinated intermediates \mathbf{B}, precedes the α-hydrogen

[^3]

Figure 3. Space-filling drawing of the molecular structure of 1b, looking down an equatorial axis.

Figure 4. Eyring plot for the $\mathbf{1 a , b} \rightarrow \mathbf{2}$ conversion.
abstraction. Kinetic analyses of path II are given in the Supporting Information. In path II, both the steady-state or preequilibrium approaches show that the observed rates of the reactions are functions of concentrations of both $\mathbf{1 a , b}$ (or $\mathbf{3 a}, \mathbf{b}$) and PR_{3}. Two additional pathways in the formation of $\mathbf{2}$ were considered: both show the dependence of observed reaction rates on the concentration of $\mathrm{PMe}_{3} .{ }^{8}$

Thus, the observations that the rates of the formation of alkyl alkylidene alkylidyne complexes $\mathbf{2}$ and $\mathbf{4}$ are independent of concentrations of PR_{3} suggest that it follows path I in Scheme 4. A review of the crystal structure of the bis(alkylidene) complex $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right)(\mathbf{1 b})^{5 \mathrm{~b}}$ supports this view. A space-filling drawing of the molecular structure of the pentacoordinated complex 1b (Figure 3) suggests that there is little open space around the W atom in $\mathbf{1 b}$ for the coordination of a second PMe_{3} ligand, as would be required via path II. In path I, α-hydrogen abstraction eliminates a ligand as SiMe_{4}, converting pentacoordinated $\mathbf{1 a , b}$ and $\mathbf{3 a , b}$ to tetracoordinated intermediates \mathbf{A}. The tetracoordinated \mathbf{A} readily accepts the coordination of a second phosphine ligand, yielding the pentacoordinated products 2 and 4. Additional studies were conducted involving the reaction of $\mathbf{1 b}$ with 1 equiv of $\mathrm{PMe}_{2} \mathrm{Ph}$ and the thermal conversion of $\mathbf{1 b}$ to $\mathbf{2}$ in the absence of added phosphine. Both, discussed below, are consistent with path I.

The observed rate constants for the $\mathbf{1 a} / \mathbf{b} \rightarrow \mathbf{2}$ conversion between $333.2(0.1)$ and $363.2(0.1) \mathrm{K}$ were calculated from

Figure 1, and they are given in Table 1. The Eyring plot (Figure 4) gives the activation parameters of the reaction: $\Delta H^{\ddagger}=28.3-$ (1.7) $\mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\ddagger}=3(5) \mathrm{eu}$. It is not clear whether alkyl alkylidyne 1a, bis(alkylidene) 1b, or both undergo α-hydrogen abstraction reactions to give 3a,b. The process may involve a cyclometalation transition state (Scheme 5). The activation parameters of the conversion ΔH^{\ddagger} and ΔS^{\ddagger} (near zero) are similar to other reported reactions through cyclometalation transition states for complexes containing $-\mathrm{CH}_{2} \mathrm{CMe}_{3}$ and/or $-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ ligands (Table 2). ${ }^{14-16}$

Thermal Conversion of $\mathbf{1 b}$ to $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)$ $\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}(2)$ and $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)(7)$ in the Absence of PMe ${ }_{3}$. $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right)(\mathbf{1 b})$ dissolved in toluene- d_{8} was heated at ca. 68(4) ${ }^{\circ} \mathrm{C}$ for 23 h . After cooling of the sample to room temperature, the ${ }^{1} \mathrm{H}$ NMR spectrum of the mixture revealed the formation of alkyl alkylidene alkylidyne complex 2 and phosphine-free 7, along with unreacted 1a,b. ${ }^{1} \mathrm{H}$ NMR spectra before and after the heating are given in the Supporting Information. This observation is consistent with the equilibrium involving 7, PMe_{3}, and 1a (Scheme 6) that leads to partial PMe_{3} dissociation from 1a to provide the free phosphine. At the same time, 1a,b undergoes the α-hydrogen abstraction to give the intermediate \mathbf{A} (Scheme 4), which then picks up the free PMe_{3}, forming bisphosphine complex 2. The ratio of $\mathbf{1}$ vs $\mathbf{2}$ is ca. $0.63: 1.00$. The estimated rate constant for the formation of $\mathbf{2}$ using eq 1 and this ratio is ca. $1.2 \times 10^{-5} \mathrm{~s}^{-1}$. In comparison, the rate constant at $65.0-$ $(0.1)^{\circ} \mathrm{C}$ is $1.4(0.2) \times 10^{-5} \mathrm{~s}^{-1}$ (Table 1). It should be noted that there was no added free PMe_{3} in the current reaction. The PMe_{3} ligand that reacts with $\mathbf{1 a , b}$ to give 2 comes from the dissociation of $\mathbf{1 a}, \mathbf{b}$. The fact that the estimated rate constant for this reaction is close to that obtained for systems with added PMe_{3} (Table 1) is consistent with path I in Scheme 4. 1a,b readily dissociates PMe_{3} but undergoes a slow, rate-determining α-hydrogen abstraction. The intermediate \mathbf{A} then quickly picks up PMe_{3} dissociated from 1a,b (Scheme 6) to give 2.

Reaction of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right)(1 \mathrm{~b})$ with 1 equiv of $\mathbf{P M e}_{2} \mathbf{P h}$. A mixture of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\left(=\mathrm{CHSiMe}_{3}\right)_{2}-$ $\left(\mathrm{PMe}_{3}\right)$ (1b) and 1 equiv of $\mathrm{PMe}_{2} \mathrm{Ph}$ in toluene- d_{8} was heated at ca. $68(4){ }^{\circ} \mathrm{C}$ for 39 h . The solution was cooled to $-20{ }^{\circ} \mathrm{C}$, and its ${ }^{1} \mathrm{H}$ NMR spectrum revealed the formation of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}(\mathbf{2}), \mathrm{W}\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (4), and a new mixed diphosphine complex, $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)(\equiv$ $\left.\mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(8)$. The alkylidene proton resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction mixture is shown in Figure 5. This observation is consistent with the mechanistic pathways in Scheme 7. PMe_{3} dissociates from 1b, yielding 7, which then reacts with $\mathrm{PMe}_{2} \mathrm{Ph}$ to give an equilibrium mixture of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(\mathbf{3 a}) \rightleftharpoons \mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2^{-}}$ $\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)$ (3b). Both 1 and $\mathbf{3}$ undergo the α-hydrogen abstraction reactions to give the intermediates, which then react with PMe_{3} or $\mathrm{PMe}_{2} \mathrm{Ph}$ to give the three alkyl alkylidene alkylidyne complexes $\mathbf{2}, \mathbf{4}$, and $\mathbf{8}$.

[^4]
Concluding Remarks

The equilibrium mixtures $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PR}_{3}\right)$ $(\mathbf{1} \mathbf{a} / \mathbf{3 a}) \rightleftharpoons \mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PR}_{3}\right)(\mathbf{1} \mathbf{b} / \mathbf{3} \mathbf{b})$ have been shown to convert to alkyl alkylidene alkylidyne complexes $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PR}_{3}\right)_{2}(\mathbf{2}$ and 4). In other words, $\mathbf{1 a} / \mathbf{3 a} \rightleftharpoons \mathbf{1 b} / \mathbf{3} \mathbf{b}$ are intermediates in the reactions of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)(7)$ with PR_{3} to give 2 and 4. The kinetic studies, the first such studies of the formation of the complexes containing alkyl alkylidene alkylidyne ligands, show that the $\alpha-\mathrm{H}$ abstraction reaction to form 2 follows first-order kinetics. These results suggest that the equilibrium mixture $\mathbf{1 a} \rightleftharpoons \mathbf{1 b}$ undergoes a rate-determining, α-hydrogen abstraction reaction to give $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)(=\mathrm{CHSiMe} 3)\left(\equiv \mathrm{CSiMe}_{3}\right)-$ (PMe_{3}) (intermediate \mathbf{A}), followed by fast coordination of PMe_{3} to give 2.

It is interesting to note the difference in the reactivities of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)(7)$ and its analogue $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{3^{-}}$ $\left(\equiv \mathrm{CCMe}_{3}\right)$ toward $\mathrm{PMe}_{3} . \mathrm{W}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{3}\left(\equiv \mathrm{CCMe}_{3}\right)$ reacts with neat PMe_{3} in a sealed tube at $100^{\circ} \mathrm{C}$, giving the alkyl alkylidene alkylidyne complex $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)\left(=\mathrm{CHCMe}_{3}\right)\left(\equiv \mathrm{CCMe}_{3}\right)$ $\left(\mathrm{PMe}_{3}\right)_{2}$ through $\alpha-\mathrm{H}$ abstraction and CMe_{4} elimination, as Schrock and Clark reported (Scheme 1). ${ }^{1}$ When ca. 1 equiv of PMe_{3} was added to $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{3}\left(\equiv \mathrm{CCMe}_{3}\right)$ in benzene- d_{6} at room temperature, a similar reaction giving $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)(=$ $\left.\mathrm{CHCMe}_{3}\right)\left(\equiv \mathrm{CCMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}$ and CMe_{4} occurred. ${ }^{5}$ No adduct between alkylidyne $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{CMe}_{3}\right)_{3}\left(\equiv \mathrm{CCMe} e_{3}\right)$ and PMe_{3} was observed. In comparison, $\mathrm{PR}_{3}\left(\mathrm{R}_{3}=\mathrm{Me}_{3}, \mathrm{Me}_{2} \mathrm{Ph}\right)$ coordinates readily to $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)(7)$ to give the phosphine alkylidyne adducts $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PR}_{3}\right)(\mathbf{1 a}$ and $\mathbf{3 a})$. These phosphine alkylidyne adducts then undergo α-hydrogen migration to give the bis(alkylidene) tautomers $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2^{-}}$ $\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PR}_{3}\right)$ (1b and 3b). An α-hydrogen abstraction, followed by PR_{3} coordination, gives the alkyl alkylidene alkylidyne complexes 2 and 4. Thus, in the current case involving the $-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ and $\equiv \mathrm{CSiMe}_{3}$ ligands, there are intermediates [observed alkyl alkylidyne- $\mathrm{PR}_{3} \rightleftharpoons$ bis(alkylidene) $-\mathrm{PR}_{3}$ tautomeric mixtures and likely intermediate $\left.\mathbf{A}\right]$ before the formation of two rare alkyl alkylidene alkylidyne complexes $\mathbf{2}$ and 4 . The current work exemplifies the differences in $-\mathrm{CH}_{2} \mathrm{CMe}_{3}$ and $-\mathrm{CH}_{2} \mathrm{SiMe}_{3}$ ligand systems. ${ }^{4}$

Experimental Section

All manipulations were performed under a dry nitrogen atmosphere with the use of either a glovebox or standard Schlenk techniques. Solvents were purified by distillation from potassium benzophenone ketyl. NMR solvents were dried and stored over $5 \AA$ molecular sieves. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Bruker AC-250 or AMX-400 spectrometer and referenced to solvent (residual protons in the ${ }^{1} \mathrm{H}$ spectra). ${ }^{31} \mathrm{P},{ }^{29} \mathrm{Si}$, and HMQC (heteronuclear multiple quantum coherence) spectra were recorded on a Bruker AMX-400 spectrometer. ${ }^{29}$ Si chemical shifts were referenced to SiMe_{4}.

Preparation of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}(2)$. $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)(7,0.050 \mathrm{~g}, 0.0942 \mathrm{mmol})$ was dissolved in toluene $(0.5 \mathrm{~mL})$ in a Schlenk flask (50 mL). PMe_{3} (ca. 10 equiv, 0.966 mmol) was added via a syringe to the vigorously stirred solution at $-40^{\circ} \mathrm{C}$. The mixture was then stirred at room temperature for 24 h , followed by heating at $80^{\circ} \mathrm{C}$ for another 24 h . All volatiles were removed in vacuo at room temperature, the residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the mixture was filtered. The filtrate was put in a freezer at $-32{ }^{\circ} \mathrm{C}$ and then filtered to remove a small amount of a white solid impurity. After this second filtration, the volatiles in the solution were removed in vacuo to give 2 a dark brown solid ($0.252 \mathrm{~g}, 45 \%$ yield).

Figure 5. ${ }^{1} \mathrm{H}$ NMR spectra $\left(-20{ }^{\circ} \mathrm{C}\right)$ of a solution of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right)(\mathbf{1 b})$ and 1 equiv of $\mathrm{PMe}_{2} \mathrm{Ph}$ in toluene- d_{8} after heating at ca. $68(4){ }^{\circ} \mathrm{C}$ for 39 h . This alkylidene proton region shows the formation of $\mathbf{2}, \mathbf{4}$, and mixed diphosphine alkyl alkylidene alkylidyne complex $\mathbf{8}$.

2-syn: ${ }^{1} \mathrm{H}$ NMR (toluene- $d_{8}, 399.97 \mathrm{MHz}, 23{ }^{\circ} \mathrm{C}$, J in Hz) $\delta 10.54$ (t, $\left.1 \mathrm{H},=\mathrm{CHSiMe},{ }_{3}{ }^{3} J_{\mathrm{P}-\mathrm{H}}=4.2\right), 1.26\left(\mathrm{t}, 18 \mathrm{H}, \mathrm{PMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=3.6\right), 0.33$ $\left(\mathrm{s}, 9 \mathrm{H},-\mathrm{Si} M e_{3}\right), 0.23\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si} M e_{3}\right), 0.19\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{SiMe} e_{3}\right),-0.04$ (t, 2H, $-\mathrm{CH}_{2} \mathrm{SiMe}_{3},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=22.4$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene- $d_{8}, 100.59$ $\mathrm{MHz}, 23{ }^{\circ} \mathrm{C}, J$ in Hz) $\delta 339.0\left(\mathrm{t}, \equiv C \mathrm{SiMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=11.1,{ }^{1} J_{\mathrm{W}-\mathrm{C}}=\right.$ 161.8), $275.0\left(\mathrm{t},=C \mathrm{HSiMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=11.1,{ }^{1} J_{\mathrm{W}-\mathrm{C}}=101.5\right), 25.6(\mathrm{t}$, $\left.-\mathrm{CH}_{2} \mathrm{SiMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=6.2,{ }^{1} J_{\mathrm{W}-\mathrm{C}}=36.3\right), 20.7\left(\mathrm{t}, \mathrm{PMe}_{3},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=14.5\right)$, $5.2\left(\mathrm{~s},-\mathrm{Si} M e_{3}\right), 3.7\left(\mathrm{~s},-\mathrm{Si} M e_{3}\right), 2.4\left(\mathrm{~s},-\mathrm{Si} M e_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (toluene- $d_{8}, 161.92 \mathrm{MHz}, 23{ }^{\circ} \mathrm{C}, J$ in Hz$) \delta-2.2\left(\mathrm{~s},{ }^{1} J_{\mathrm{W}-\mathrm{P}}=249\right)$; ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene- $d_{8}, 79.46 \mathrm{MHz},-23{ }^{\circ} \mathrm{C}, J$ in Hz) $\delta-2.1$ (s, $\left.-\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right),-4.7(\mathrm{~s},=\mathrm{CHSiMe} 3),-23.1\left(\mathrm{~s}, \equiv \mathrm{CSiMe}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ assignments were confirmed by DEPT, HMQC, and ${ }^{1} \mathrm{H}$-gated-de-coupled- ${ }^{13} \mathrm{C}$ NMR. 2-anti: ${ }^{1} \mathrm{H}$ NMR (toluene- $d_{8}, 399.97 \mathrm{MHz}, 23{ }^{\circ} \mathrm{C}$, J in Hz) $\delta 13.46\left(\mathrm{t}, 1 \mathrm{H},=\mathrm{CHSiMe}_{3},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=5.6\right), 1.29\left(\mathrm{t}, 18 \mathrm{H}, \mathrm{PMe} e_{3}\right.$, $\left.{ }^{2} J_{\mathrm{P}-\mathrm{H}}=3.2\right), 0.32\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si} M e_{3}\right), 0.22\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si} M e_{3}\right), 0.06(\mathrm{~s}, 9 \mathrm{H}$, $-\mathrm{Si} M e_{3}$), $-0.37\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{SiMe}_{3},{ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=21.4\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene- $d_{8}, 100.59 \mathrm{MHz}, 23{ }^{\circ} \mathrm{C}, J$ in Hz) $\delta 343.5\left(\mathrm{t}, \equiv C \mathrm{SiMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{C}}\right.$ $=10.5)$, $273.8\left(\mathrm{t},=C \mathrm{HSiMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=11.1\right) 34.0\left(\mathrm{t},-\mathrm{CH}_{2} \mathrm{SiMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{C}}\right.$ $=6.2$), 20.7 (t , overlapping with 2-syn and toluene- d_{8} peaks, $\mathrm{PM} e_{3}$), $6.4\left(\mathrm{~s},-\mathrm{Si} M e_{3}\right), 3.1\left(\mathrm{~s},-\mathrm{Si} M e_{3}\right), 2.0\left(\mathrm{~s},-\mathrm{Si} M e_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}$ (toluene- $d_{8}, 161.92 \mathrm{MHz}, 23^{\circ} \mathrm{C}, J$ in Hz$) \delta-2.4$ (s). Anal. Calcd: C, 36.36; H, 8.14. Found: C, 36.43; H, 8.17.

Preparation of $\mathbf{W}\left(\mathbf{C H}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)\left(\equiv \mathrm{CSiMe}_{3}\right)\left(\mathbf{P M e}_{2} \mathbf{P h}\right)_{2}$ (4). $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)(7,0.050 \mathrm{~g}, 0.0942 \mathrm{mmol})$ was dissolved in toluene $(0.5 \mathrm{~mL})$ in a Schlenk tube $(10 \mathrm{~mL}) . \mathrm{PMe}_{2} \mathrm{Ph}$ (ca. 10 equiv, 0.970 mmol) was added with a syringe to the vigorously stirred solution at $-42{ }^{\circ} \mathrm{C}$. The mixture was then stirred at room temperature for 24 h , followed by heating at $78-79^{\circ} \mathrm{C}$ for another 24 h . All volatiles were removed in vacuo at $57^{\circ} \mathrm{C}$ for 6 h to give a viscous, dark brown liquid ($0.475 \mathrm{~g}, 70 \%$ yield). 4-syn: ${ }^{1} \mathrm{H}$ NMR (toluene- $d_{8}, 399.97 \mathrm{MHz}, 23$ ${ }^{\circ} \mathrm{C}, J$ in Hz$) \delta 10.89\left(\mathrm{t}, 1 \mathrm{H},=\mathrm{CHSiMe} 3,{ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=3.7\right), 7.4-7.0(\mathrm{~m}$, $\left.5 \mathrm{H}, C_{6} \mathrm{H}_{5}\right), 1.68\left(\mathrm{t}, 6 \mathrm{H},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=3.6, \mathrm{PMe} e_{\mathrm{a}} \mathrm{Me} \mathrm{Ph}\right), 1.65\left(\mathrm{t}, 6 \mathrm{H},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=\right.$ 3.6, $\left.\mathrm{PMe}_{\mathrm{a}} M e_{\mathrm{b}} \mathrm{Ph}\right), 0.44\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si} M e_{3}\right), 0.28\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si} M e_{3}\right),-0.03$ $\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{SiMe}_{3},{ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=21.5\right),-0.23(\mathrm{~s}, 9 \mathrm{H},-\mathrm{SiMe} 3) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene- $\left.d_{8}, 100.59 \mathrm{MHz}, 23^{\circ} \mathrm{C}, J \mathrm{in} \mathrm{Hz}\right) \delta 341.6\left(\mathrm{t}, \equiv \mathrm{CSiMe}_{3}\right.$, $\left.{ }^{2} J_{\mathrm{P}-\mathrm{C}}=10.2,{ }^{1} J_{\mathrm{W}-\mathrm{C}}=162.7\right), 277.7\left(\mathrm{t},=C \mathrm{HSiMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=11.0\right.$, $\left.{ }^{1} J_{\mathrm{W}-\mathrm{C}}=103.5\right), 138-124\left(C_{6} \mathrm{H}_{5}\right), 28.5\left(\mathrm{t},-\mathrm{CH}_{2} \mathrm{SiMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=5.6\right.$, $\left.{ }^{1} J_{\mathrm{W}-\mathrm{C}}=37.5\right), 23.5\left(\mathrm{t},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=15.3, \mathrm{P} M e_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right), 20.6\left(\mathrm{t},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=15.9\right.$, $\left.\mathrm{PMe}_{\mathrm{a}} M e_{\mathrm{b}}\right), 4.7\left(\mathrm{~s},-\mathrm{Si} M e_{3}\right), 3.9\left(\mathrm{~s},-\mathrm{Si} M e_{3}\right), 2.6\left(\mathrm{~s},-\mathrm{Si} M e_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene- $d_{8}, 161.92 \mathrm{MHz}, 23{ }^{\circ} \mathrm{C}, J$ in Hz$) \delta 12.6\left(\mathrm{~s},{ }^{1} J_{\mathrm{W}-\mathrm{P}}=\right.$ 250); ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene- $d_{8}, 79.46 \mathrm{MHz},-20^{\circ} \mathrm{C}, J$ in Hz$) \delta-2.8$ $\left(\mathrm{s},-\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right),-3.8(\mathrm{~s},=\mathrm{CHSiMe} 3),-22.1\left(\mathrm{~s}, \equiv \mathrm{CSiMe}_{3}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ assignments were confirmed by HMQC experiments. 4-anti: ${ }^{1} \mathrm{H}$ NMR (toluene- $d_{8}, 399.97 \mathrm{MHz}, 23^{\circ} \mathrm{C}, J$ in Hz) $\delta 13.73(\mathrm{t}, 1 \mathrm{H},=$ $\left.\mathrm{CHSiMe}_{3},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=4.8\right), 7.4-7.0\left(\mathrm{~m}, 5 \mathrm{H}, C_{6} \mathrm{H}_{5}\right), 1.55\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{PMe} \mathrm{a}^{-}\right.$ $\left.\mathrm{Me}_{\mathrm{b}} \mathrm{Ph},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=3.2\right), 1.48\left(\mathrm{t}, 6 \mathrm{H}, \mathrm{PMe}_{\mathrm{a}} M e_{\mathrm{b}} \mathrm{Ph},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=3.0\right), 0.20(\mathrm{~s}$,
$\left.9 \mathrm{H},-\mathrm{Si} M e_{3}\right), 0.18\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si} M e_{3}\right), 0.15\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{SiMe}_{3},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=\right.$ 21.6), $-0.05\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si} M e_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene- $d_{8}, 100.59 \mathrm{MHz}$, $23{ }^{\circ} \mathrm{C}, J$ in Hz) $\delta 344.6\left(\mathrm{t}, \equiv C \mathrm{SiMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=11.9\right), 272.9(\mathrm{t}$, $\left.=C \mathrm{HSiMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=8.5\right), 138-124\left(C_{6} \mathrm{H}_{5}\right), 36.0\left(\mathrm{t},-\mathrm{CH}_{2} \mathrm{SiMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{C}}\right.$ $=4.9), 19.7\left(\mathrm{t},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=14.7, \mathrm{PM} e_{\mathrm{a}} \mathrm{Me}_{\mathrm{b}}\right), 18.9\left(\mathrm{t},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=13.8\right.$, $\left.\mathrm{PMe}_{\mathrm{a}} M e_{\mathrm{b}}\right), 6.0\left(\mathrm{~s},-\mathrm{Si} M e_{3}\right), 3.1\left(\mathrm{~s},-\mathrm{Si} M e_{3}\right), 1.9\left(\mathrm{~s},-\mathrm{Si} M e_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene- $d_{8}, 161.92 \mathrm{MHz}, 23{ }^{\circ} \mathrm{C}, J$ in Hz$) \delta 10.9\left(\mathrm{~s},{ }^{1} J_{\mathrm{W}-\mathrm{P}}=\right.$ 250). Anal. Calcd: C, 46.79 ; H, 7.29. Found: C, 46.41 ; H, 7.19.

Thermal Conversion of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right)(\mathbf{1 b})$. $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right)(\mathbf{1 b}, 42 \mathrm{mg})$ was dissolved in toluene $-d_{8}(0.5 \mathrm{~mL})$ in a J . Young NMR tube. The solution was heated at ca. $68(4){ }^{\circ} \mathrm{C}$ for $23 \mathrm{~h} . \mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CHSiMe}_{3}\right)(7)$ and $\mathrm{W}\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)\left(\equiv \mathrm{CHSiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}$ (2-syn, 2-anti) were found as products in ca. 0.83:1.00 ratio along with decomposed $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2^{-}}$ $\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right)(\mathbf{1 b}) .{ }^{8}$

Reaction of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right)(1 \mathrm{~b})$ with 1 equiv of $\mathbf{P M e}_{2} \mathbf{P h}$. $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{2}\left(=\mathrm{CHSiMe}_{3}\right)_{2}\left(\mathrm{PMe}_{3}\right)(\mathbf{1 b}, 42 \mathrm{mg})$ and 1 equiv of $\mathrm{PMe}_{2} \mathrm{Ph}$ were dissolved in toluene- $d_{8}(0.5 \mathrm{~mL})$ in a J . Young NMR tube. The mixture was heated at ca. $68(4)^{\circ} \mathrm{C}$ for 39 h . The reaction was found to give three products: $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)-$ $\left(\equiv \mathrm{CHSiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)_{2}$ (2-syn, 2-anti); W $\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)(\equiv$ $\left.\mathrm{CHSiMe}_{3}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ (4-syn, 4-anti); a new, mixed diphosphine alkyl alkylidene alkylidyne complex, $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)\left(=\mathrm{CHSiMe}_{3}\right)(\equiv$ $\left.\mathrm{CHSiMe}_{3}\right)\left(\mathrm{PMe}_{3}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)(8) .8$-syn: ${ }^{17}{ }^{1} \mathrm{H}$ NMR (toluene- $d_{8}, 399.97$ $\mathrm{MHz}, 23{ }^{\circ} \mathrm{C}, J$ in Hz$) \delta 10.70\left(\mathrm{t}, 1 \mathrm{H},=\mathrm{CHSiMe}_{3},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=3.8\right), 7.6-$ $7.0\left(\mathrm{~m}, 5 \mathrm{H}, C_{6} \mathrm{H}_{5}\right), 1.64\left(\mathrm{~d}, 3 \mathrm{H},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=8.0 \mathrm{~Hz}, \mathrm{PMe}_{\mathrm{A}} M e_{\mathrm{B}} \mathrm{Ph}\right), 1.62$ $\left(\mathrm{d}, 3 \mathrm{H},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=8.0 \mathrm{~Hz}, \mathrm{PMe} \mathrm{A}_{\mathrm{A}} \mathrm{Me}_{\mathrm{B}} \mathrm{Ph}\right), 1.28\left(\mathrm{~d}, 9 \mathrm{H},{ }^{2} J_{\mathrm{P}-\mathrm{H}}=8.4 \mathrm{~Hz}\right.$, $\left.\mathrm{PM} e_{3}\right), 0.46\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si} M e_{3}\right), 0.28\left(\mathrm{~s}, 9 \mathrm{H},-\mathrm{Si} M e_{3}\right), 0.02(\mathrm{~s}, 9 \mathrm{H}$, $\left.-\mathrm{Si} M e_{3}\right),-0.13\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{SiMe}_{3},{ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=14.0\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (toluene- $\left.d_{8}, 100.59 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}, J \mathrm{in} \mathrm{Hz}\right) \delta 339.8\left(\mathrm{t}, \equiv C \mathrm{SiMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{C}}\right.$ $=9.7), 275.8\left(\mathrm{t},=C \mathrm{HSiMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=8.8\right), 151-124\left(C_{6} \mathrm{H}_{5}\right), 25.0(\mathrm{t}$, $\left.-\mathrm{CH}_{2} \mathrm{SiMe}_{3},{ }^{2} J_{\mathrm{P}-\mathrm{C}}=6.5\right), 23.4\left(\mathrm{~s}, \mathrm{PMe}_{3}\right), 9.0\left(\mathrm{t},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=16.1, \mathrm{PMe}_{\mathrm{a}}{ }^{-}\right.$ $\left.\mathrm{Me}_{\mathrm{b}}\right), 17.4\left(\mathrm{t},{ }^{1} J_{\mathrm{P}-\mathrm{C}}=19.6, \mathrm{PMe}_{\mathrm{a}} M e_{\mathrm{b}}\right), 4.3\left(\mathrm{~s},-\mathrm{Si} M e_{3}\right), 3.1\left(\mathrm{~s},-\mathrm{Si} M e_{3}\right)$, 3.0 (s, $-\mathrm{Si} M e_{3}$).

Kinetic Studies of the Formation of 2 and 4. In the kinetic studies of the formation of $\mathbf{2}$, at least a 10 -fold excess of $\mathrm{PMe}_{3}\left(C_{\mathrm{PMe}_{3}}=1.42-\right.$ $2.31 \mathrm{M})$ was added through vacuum transfer to a mixture of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{Si}\right.$ $\left.\mathrm{Me}_{3}\right)_{3}\left(\equiv \mathrm{CHSiMe}_{3}\right)(7,29.8-37.8 \mathrm{mg}, 0.0562-0.0712 \mathrm{mmol}$, ca. $0.10-$ 0.14 M), $4,4^{\prime}$-dimethylbiphenyl (an internal standard), and toluene- d_{8} in a J. R. Young's NMR tube. The sample was kept at $23^{\circ} \mathrm{C}$ overnight to establish the $\mathbf{1 a} \rightleftharpoons \mathbf{1 b}$ equilibrium. The sample was then placed in a circulation bath between $60.0(333.2 \mathrm{~K})$ and $90.0^{\circ} \mathrm{C}(363.2 \mathrm{~K})$. After a measured period of time, the NMR tube was removed from the

[^5]Scheme 7

1b

8

circulation bath and placed in a dry ice/ethanol bath at $-78^{\circ} \mathrm{C}$, and ${ }^{1} \mathrm{H}$ NMR spectra were acquired at room temperature. Integration of the ${ }^{1} \mathrm{H}-\mathrm{PM} e_{3}$ resonances at $1.26-1.29 \mathrm{ppm}$ for $\mathbf{2}$-syn and $\mathbf{2}$-anti versus an internal standard was used to give the kinetic plots in Figure 1. Both isomers were integrated together, since the peaks overlap in the ${ }^{1} \mathrm{H}$ NMR spectra. The average slope of at least two experiments was used to calculate $k_{\text {obs. }}$. The enthalpy $\left(\Delta H^{\ddagger}\right)$ and entropy $\left(\Delta S^{\ddagger}\right)$ were calculated from an unweighted nonlinear least-squares procedure. The uncertainties in ΔH^{\ddagger} and ΔS^{\ddagger} were computed from the error propagation formulas developed by Girolami and co-workers. ${ }^{18}$

Similar to the kinetic studies of the conversion of $\mathbf{1 a , b}$ to $\mathbf{2}$, the conversion of $\mathbf{3 a}, \mathbf{b}$ to $\mathbf{4}$ was monitored by ${ }^{1} \mathrm{H}$ NMR. A mixture of $\mathrm{W}\left(\mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CHSiMe}_{3}\right)(7), \mathrm{PMe}_{2} \mathrm{Ph}$, and 4,4'-dimethylbiphenyl (an internal standard) in toluene- $d_{8}\left(C_{3-0}=0.123 \mathrm{M}, C_{\mathrm{PMe}_{2} \mathrm{Ph}-0}=3.79\right.$ M or $C_{3-0}=0.107 \mathrm{M}, C_{\mathrm{PMe}_{2} \mathrm{Ph}-0}=1.45 \mathrm{M}$) in a J. R. Young's NMR tube was heated in a circulation bath at $75.0^{\circ} \mathrm{C}(348.2 \mathrm{~K})$ for a measured amount of time. The reaction was then quenched in dry ice/ ethanol bath at $-78{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectra were acquired at room temperature, and the integration of the ${ }^{1} \mathrm{H}-\mathrm{PM} e_{2} \mathrm{Ph}$ resonances at $1.61-1.64 \mathrm{ppm}$ for $\mathbf{4}$ versus an internal standard was used to give the first-order kinetic plot (Figure 2).

[^6]Attempted Reactions of $\mathbf{P C y}_{3}$ and PPh_{3} with $\mathbf{W}\left(\mathbf{C H}_{2} \mathrm{SiMe}_{3}\right)_{3}(\equiv$ CSiMe_{3}) (7). Two separate experiments were conducted with $\mathrm{W}\left(\mathrm{CH}_{2}-\right.$ $\left.\mathrm{SiMe}_{3}\right)_{3}\left(\equiv \mathrm{CSiMe}_{3}\right)(7,50 \mathrm{mg})$, 4,4'-dimethylbiphenyl (an internal standard), and toluene- d_{8} in J. R. Young's NMR tubes. PCy_{3} or PPh_{3} respectively was added in at least a 10 -fold excess. The solution was heated for 2 days at $100^{\circ} \mathrm{C}$. No reaction or adducts were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Acknowledgment. Acknowledgment is made to the National Science Foundation (Grant CHE-0516928) for financial support. We thank a reviewer for suggesting the studies of the conversion of the $\mathbf{1 a} \rightleftharpoons \mathbf{1 b}$ mixture to $\mathbf{2}$ and $\mathbf{7}$ in the absence of PMe_{3} as well as the conversion of the $\mathbf{1 a} \rightleftharpoons \mathbf{1 b}$ mixture to $\mathbf{2}, \mathbf{4}$, and $\mathbf{8}$ in the presence of $\mathrm{PMe}_{2} \mathrm{Ph}$. We also thank Michael D. Bleakley for assistance.

Supporting Information Available: NMR spectra of 2 and 4, NMR spectra of the mixtures from the thermal conversion of $\mathbf{1 b}$ in the absence of added phosphine, k_{obs} values at different $C_{\mathrm{PMe}_{3}}$ at $338.2(0.1) \mathrm{K}$, and considerations of alternative pathways to 2 and 4. This material is available free of charge via the Internet at http://pubs.acs.org.

JA067914R

[^0]: (1) Clark, D. N.; Schrock, R. R. J. Am. Chem. Soc. 1978, 100, 6774.
 (2) Churchill, M. R.; Youngs, W. J. Inorg. Chem. 1979, 18, 2454.
 (3) (a) Edwards, D. S.; Biondi, L. V.; Ziller, J. W.; Churchill, M. R.; Schrock, R. R. Organometallics 1983, 2, 1505. (b) LaPointe, A. M.; Schrock, R. R. Organometallics 1995, 14, 1875.
 (4) (a) Diminnie, J. B.; Xue, Z.-L. J. Am. Chem. Soc. 1997, 119, 12657. (b) Diminnie, J. B.; Blanton, J. R.; Cai, H.; Quisenberry, K. T.; Xue, Z.-L. Organometallics 2001, 20, 1504.

[^1]: (5) (a) Morton, L. A.; Zhang, X.-H.; Wang, R.; Lin, Z.; Wu, Y.-D.; Xue, Z.-L. J. Am. Chem. Soc. 2004, 126, 10208. (b) Morton, L. A.; Wang, R.; Yu, X.; Campana, C. F.; Guzei, I. A.; Yap, G. P. A.; Xue, Z.-L. Organometallics 2006, 25, 427.

[^2]: (7) Schrock, R. R. Chem. Rev. 2002, 102, 145.
 (8) See Supporting Information. Additional mechanistic pathways in the formation of 2 and $\mathbf{4}$ have been considered to show the dependence of reaction rates on concentration of the phosphines PMe_{3} and $\mathrm{PMe}_{2} \mathrm{Ph}$.
 (9) (a) Toreki, R.; Schrock, R. R. J. Am. Chem. Soc. 1992, 114, 3367. (b) Toreki, R.; Vaughan, G. A.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc. 1993, 115, 127.
 (10) Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 3rd ed.; Wiley: New York, 2001.
 (11) Diminnie, J. B.; Hall, H. D.; Xue, Z.-L. Chem. Commun. 1996, 2383.
 (12) Andersen, R. A.; Chisholm, M. H.; Gibson, J. F.; Reichert, W. W.; Rothwell, I. P.; Wilkinson, G. Inorg. Chem. 1981, 20, 3934.

[^3]: (13) See, e.g.: Espenson, J. H. Chemical Kinetics and Reaction Mechanism, 2nd Ed.; McGraw-Hill: New York, 1995; pp 46-49.

[^4]: (14) Wood, C. D.; McLain, S. J.; Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 3210.
 (15) Caulton, K. G.; Chisholm, M. H.; Streib, W. E.; Xue, Z.-L. J. Am. Chem. Soc. 1991, 113, 6082.
 (16) Li, L.; Hung, M.; Xue, Z.-L. J. Am. Chem. Soc. 1995, 117, 12746.

[^5]: (17) Several peaks of 2, 4, and $\mathbf{8}$ overlap in the NMR spectrum of the mixture (Supporting Information). 8-anti was not fully identified.

[^6]: (18) Morse, P. M.; Spencer, M. D.; Wilson, S. R.; Girolami, G. S. Organometallics 1994, 13, 1646.

